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ABSTRACT

ANGULAR DISTRIBUTION OF J/PSI DECAYS
IN DIMUON CHANNEL IN 800 GEV
PROTON-COPPER COLLISIONS
BY

TING-HUA CHANG

Doctor of Philosophy in Physics
New Mexico State University
Las Cruces, New Mexico, 1999

Dr. Vassili Papavassiliou, Chair

The angular distribution of J/1¢ decays in the p*p~ channel in 800 GeV
proton-copper collisions has been measured for xr > 0.25. The polarization
parameter A is extracted in 1 GeV of pr and 0.1 of zr bins for two magnet
configurations with different acceptances. The data indicate that the .J/i’s are
produced with a slight transverse polarization at small xr, which turns to longi-
tudinal at xy > 0.6. No pr dependence of X is observed. Theoretical calculations

are needed in order to interpret the measurements.
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1. INTRODUCTION

Since the 1970s the Standard Model has provided a satisfactory description of
the interactions of all known elementary particles. The underlying theory for de-
scribing the electromagnetic force in the sub-atomic world is known as Quantum
Electrodynamics (QED), while Quantum Chromodynamics (QCD) describes the
strong force. QED has been tested to be a valid theory by its amazing predictions
of the lepton magnetic moments and atomic energy spectra. But unlike QED,
even though QCD was developed following the same fundamental idea of gauge
invariance and seems to be a straightforward extension of QED, QCD is facing the
difficulties associated with non-perturbative calculations in the low-energy regime.
After decades of effort physicists have developed techniques, such as renormaliza-
tion and resummation, as well as non-perturbative ones, such as effective theories,
to help solve some of the mathematical difficulties. And nowadays we are able to
compare many experimental results with QCD predictions, and indeed QCD has
proved to be the best candidate theory for describing the strong interaction.

There are many successful examples of QCD. The earliest and most pro-
found one is the prediction of the evolution of the structure functions in Deep
Inelastic Scattering (DIS). Given the quark and gluon distributions at a fixed
energy-momentum transfer 2, QCD can actually predict the nucleon struc-
ture functions at arbitrary Q* using the Evolution Equations [Pic 95]. Later in

collider experiments, Next-to-Leading Order (NLO) QCD calculations predicted



the inclusive jet-production cross section over several orders of magnitude and
over a wide range of center-of-mass (COM) energy and jet transverse momen-
tum [Arn 86, Ali 91, Abe 93] using the Parton Distribution Functions (PDFs)
extracted from the DIS data. Another example is the Drell-Yan process [Dre 70].
The Drell-Yan process, massive lepton-pair production via electroweak quark-
antiquark annihilation into vector bosons (photon, W*, or Z) and then decay, is
one of the few processes which have been calculated up to next-to-next-to-leading
order (NNLO) in perturbative QCD. A recent calculation [Rij 95] including some
of the NNLO terms has shown a good agreement with the data. Another exam-
ple is the inclusive heavy quark production. Fixed-target studies of heavy-flavor
production have provided a wealth of data. Total cross sections, single-inclusive
distributions, correlations between the quark and the antiquark have been mea-
sured in both hadro- and photoproduction. All experimental results are in quali-
tative agreement with perturbative QCD calculations. A detailed comparison of
the fixed-target data and NLO QCD predictions can be found in [Fri 97].
Throughout the entire thesis the following symbols are used to describe the
kinematic variables:
S: center-of-mass energy of the beam-target system.
m: rest mass of the dimuon pair.
pr: transverse momentum of the dimuon pair.

xp: dimensionless longitudinal momentum of the dimuon pair. It is defined as the



pair longitudinal momentum P;, divided by its maximum kinematically allowed
value Pr e in the beam-target COM frame. It relates to the Bjorken x, the
fraction of the hadron momentum carried by the parton in the hadron boosted to
the infinite-momentum frame, of the beam parton x; and of the target parton x,
by zr(1 —m?/S) = x; — xs.

f and ¢: polar and azimuthal angles of the dimuon pair; described in section

1.2.3.

1.1 Failure of Perturbative QCD in Charmonium Production

While QCD has provided successful descriptions of many aspects of the ex-
perimental data, there are still some phenomena which could not be described.
The production of charmonium at large transverse momentum is one of such pro-
cesses: the observed production cross sections have differed from QCD predictions
by more than an order of magnitude, even though in [Fri 97] it has been shown
that the charm production total cross section can be calculated from QCD. This
discrepancy between experiment and theory has revealed a more complicated pic-
ture for heavy quarkonium production.

Quarkonium production was conventionally calculated based on the color-
singlet model (CSM) before 1993. However this model has failed to describe
charmonium-hadroproduction data [Sch 94]. In hadroproduction of charmonium
at fixed target energy, /S < 50 GeV, the ratio of the number of .J/¥’s pro-

duced directly to those arising from decays of higher charmonium states is under-
3
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Figure 1.1: CDF data on the differential cross section for prompt ¢'s. The curves
are the LO predictions of the color-singlet model (dashed curve), predictions in-
cluding fragmentation in the color-singlet model (dotted curve), and including con-
tributions from gluon fragmentation via the color-octet mechanism (solid curve)
with the normalization adjusted to fit the CDF data. (Taken from [Bra 96])

predicted by at least a factor of five [Van 95]. At Tevatron collider energies, the
excess of direct ¢’ production compared to the CSM prediction is a factor of 30
[Bra 94, Roy 94]. This excess has been referred to as the ¢'-anomaly. Figure 1.1
compares the CDF ¢’ data and some theoretical predictions. Figure 1.2 shows

the comparison with the fixed-target data.
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1.2 Developments of Theoretical Models

Data from the Tevatron have revealed that the production rate of ¢’ at large
transverse momentum is more than an order of magnitude larger than the early
theoretical predictions. These results can be understood by taking into account
two more mechanisms. The first is the realization that fragmentation must domi-
nate at large transverse momentum, which implies that most charmonium in the
large pr region is produced by the hadronization of individual high-pr partons.
The second is the development of a factorization formalism for quarkonium pro-
duction based on non-relativistic QCD (NRQCD) that allows the formation of
charmonium from color-octet ¢¢ pairs to be treated systematically. In this section
we will summarize these theoretical developments. A more complete review of the

development was given by Braaten et al. [Bra 96].

1.2.1 Color Singlet Model

A thorough review of the applications of the color-singlet model to heavy-
quarkonium production was given by Schuler [Sch 94]. To describe the color-
singlet model, we can think of the production of charmonium as proceeding in
two steps. The first step is the production of a c¢ pair, and the second step is the
binding of the ¢¢ pair into a charmonium state.

We first consider the production of the c¢ pair. The c¢ pair must be produced

with relative momentum that is small compared to the mass of the charm quark



in order to have a significant probability to be bound together. Assuming that the
¢ and ¢ do not exist in the initial state, the production of a ¢¢ pair must involve
virtual particles which are off-shell by amounts of order m, or larger. This part
of the amplitude is called the short-distance part, because the spatial separation
of the ¢ and € is of order 1/m, or smaller. On the other side, the formation of
the bound state is considered to be the long-distance part of the amplitude. The
total amplitude of charmonium production is expected to be dependent on the
charmonium state H and on the quantum numbers of the ¢¢ bound pair.

For any charmonium state, the dominant Fock state is a color-singlet c¢ pair
in a definite angular-momentum state. We introduce the following notation, for
example, the dominant Fock state for the J/v is |c¢(1,® S1)), while for the x.;
it is |c¢(1,® Py)). The color states are denoted by 1 for color-singlet and 8 for
color-octet, and the angular momentum states are denoted using the standard
spectroscopic notation 2°*'L;. The color-singlet model requires that, only the
€ pair in a color-singlet 2°*1L; state can bind to form the charmonium with
|ce(125t1 L)) as the final Fock state.

The color-singlet model has enormous predictive power. The cross section
for producing a quarkonium state is predicted in terms of a single nonperturba-
tive parameter for each orbital angular momentum multiplet. The amplitude for
producing a color-singlet ¢¢ pair with small relative momentum (the short dis-

tance part) can be calculated using perturbative QCD, while the long-distance



part parameters can be determined from experiments and are expected to be
process-independent. Thus the long-distance parameters determined from decays
of the charmonium states can be used to predict the normalized production rate
of charmonium states.

We should keep in mind that the color-singlet model is only a model. The most
basic assumption, the factorization picture, has never been proven to be correct,
and the relativistic corrections which account for the relative velocity of the quark
and antiquark are neglected. The color-singlet model also assumes that a c¢ pair
produced in a color-octet state will never form the final charmonium. However it
might be possible that a color-octet ¢¢ pair can transit to a color-singlet state by
radiating soft gluons. We will include the color-octet mechanism in the coming

section.

1.2.2 Gluon Fragmentation

The first major conceptual advance in recent theoretical developments of quarko-
nium production was the idea of “fragmentation.” Fragmentation is the formation
of a hadron within a jet produced by a parton with large transverse momentum.
But here this term is used to include general hadronization processes.

The real revolution about the fragmentation mechanism is the realization that
a colored parton, generally a gluon, can result in a color-singlet final state via soft-
gluon emissions. This possibility was not considered in the conventional wisdom.

Once it was accepted, the color-octet c¢ state could also result in the color-singlet

8



final quarkonium by the same argument, and thus the contributions from color-
octet components become possible, as opposed to the color-singlet model.

When the CSM includes the contributions from gluon-fragmentation, its pre-
diction qualitatively agrees with the shape of the CDF ¢’ data, but is still off in
normalization by an order of magnitude, in the ' py differential cross section.
The prediction from the CSM failed completely in the high py region without
including the gluon-fragmentation mechanism [Bra 95]. Figure 1.1 shows the pre-

dictions and data.

1.2.3 Color-Octet Mechanism

The second major conceptual advance is to realize that the color-octet mech-
anism can be important. Contrary to the basic assumption of the color-singlet
model, a ¢¢ pair that is produced in a color-octet state can bind to form the
charmonium final state.

By including the contribution from the color-octet object in the matrix el-
ement, one can make the prediction agree well with the experimental data by
leaving the relative size of the color-octet contribution as an adjustable param-
eter. Its verification now requires considering quarkonium production in other
processes in order to demonstrate process-independence of the long-distance part
of the color-octet matrix element. Now the data available from different processes

are CDF data, fixed-target data, and photo-production data. The size of color-
9
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octet contributions from these data are not obviously in agreement with each other
and more sophisticated explanations are needed.

Other problems associated with the color-octet mechanism are the discrepan-
cies with the x.1/xc production ratio and the J/1(¢)') polarization: the x.1/Xc2
production ratio remains almost an order of magnitude too low, and the predicted
transverse polarization of the J/1) and ' is too large compared to the existing pion
data in fixed-target experiments [Ben 96]. All of these suggest that higher-twist
effects may be substantial even after including the octet mechanism.

A polarization measurement is a crucial test for the color-octet mechanism.
Since the octet production matrix elements of NRQCD lead to a polarization
pattern different from the CSM, a polarization measurement can provide us with
significant information on quarkonium production. For example, .J/v¢’s produced
at the Tevatron at large pr are predicted to be almost fully transversely polarized,
i.e. A(J/v) ~ 1 [Cho 95], as a result of production via gluon fragmentation. At
smaller pr, the .J/1’s are predicted to be produced essentially unpolarized around
pr ~ 5 Gev [Ben 97]. The observation of this polarization pattern would test
the underlying theory (the Factorization Approach). To limit the introduction,
we will concentrate our attention on fixed-target experiments from now on since

FNAL E866 is a fixed-target experiment.

11



The polarization of the quarkonium, measured by analyzing the angular distribu-

tion of the quarkonium decay products in its rest frame, is of the form

do/dcos® ~ 1+ \cos® (1.1)

where # is the polar angle measured in the rest frame of the quarkonium. The
quarkonium rest frame is well specified except for arbitrary three-dimensional
rotations. The Collins-Soper frame [Col 77|, in which the Z-axis is defined to
be parallel to the bisector of the angle between the directions of the interacting
hadrons in the quarkonium rest frame, is used in this analysis. In all other ear-
lier fixed-target experiments the Gottfried-Jackson frame, in which the Z-axis is
defined to be parallel to the incoming beam axis in the quarkonium rest frame,
was used. These two frames are equivalent if the quarkonium has zero py [Fal 86].
For the pr range of fixed-target experiments, of the order of 1 GeV, compared to
hundreds of GeV of longitudinal momentum, the two frames are approximately

the same [Gee 98].

1.3 Fixed-Target Polarization Experiments and Predictions

Polarization measurements have been performed for J/1) and ¢’ production
in pion and proton scattering fixed-target experiments. From a theoretical point

of view, the ¢’ decay has been more extensively studied because all the v’ data

12



samples are direct 1's. The observed value of A for ¢’ is 0.02 + 0.14, measured at
Vs =21.8 GeV in the region zr > 0.25 by Heinrich et al. [Hei 91]. When studying
the polarization of the .J/i decay one has to take the polarization inherited from
decays of the higher charmonium states x.; and ¢’ into account and this leaves
some ambiguity in the interpretation of the results. In the following sections we

will only review .J/v polarization experiments to compare with the E866 results.

1.3.1 Model Predictions of Polarization at Fixed-Target Energies
1.3.1.a Color-Singlet Model

The polarization of .J/i¢ has been calculated from perturbative QCD by Vant-
tinen et al. [Van 95]. The parameter A in Equation 1.1 was calculated from the c¢
production amplitude and the electric dipole approximation of radiative y decays.

Figure 1.4a shows the predicted values of the parameter A in Equation 1.1
in the Gottfried-Jackson frame as a function of zp, for the direct .J/t¢ and the
X12 — J/1 + v processes separately. The dashed lines indicate the effect of a
Gaussian smearing in the transverse momentum of the beam partons. The over-
all A(zp) including direct and indirect .J/¢ processes is shown in Figure 1.4b
and compared with the Chicago-lowa-Princeton [Bii 87] and E537 data [Ake 93].
The QCD calculation gives A ~ 0.5 for zr < 0.6, significantly larger than the
measured value. The lower curve in Figure 1.4b shows the effect of multiplying
the partial J/v cross section with the K-factors obtained from experiments. The

discrepancies between the calculated and measured values of A suggest that the

13
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Figure 1.4: Leading-twist predictions of A(xr) in 7N collisions. The beam energy
Eisp = 300 GeV. (a)The three solid curves show the decay distributions of .J/t’s
produced via radiative decays of the y, and x; states and “directly” in gluon
fusion. The dashed curves show the effect of smearing the transverse momentum
distribution of the beam parton by a Gaussian function expl[-(k, /500 MeV)?].
(b)The combined decay distribution of all .J/1’s, including contributions from
X1,2 decays and direct production, is shown here. The lower curve shows the
effect of adjusting the relative normalization of the different contributions to their
measured values by appropriate K-factors. The dashed curve shows the effect of
transverse-momentum smearing and K-factors adjustments. The data are from
the Chicago-Towa-Princeton (full circles) and E537 (open circles) experiments.
(Taken from [Van 95]).
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leading-twist processes considered in the calculation are not adequate for explain-

ing charmonium production.

1.3.1.b Color-Evaporation Model

The color-evaporation model [Fri 77, Hal 77] assumes that the ¢¢ pair in 35,
state can transit to 1Sy state via soft gluon emission, so J/v is always produced
unpolarized. In this model the color and spin quantum numbers of the ¢¢ pair
are irrelevant. The fraction of the ¢¢ pairs bound into J/1 is described by a
phenomenological parameter fjy,.

The color-evaporation model is considered to be an over-simplified model, be-
cause it is not concerned with the details of the particles which initiate the re-
action. The evident failure is the prediction of the fraction of J/¢ coming from
Xe decays. According to the color-evaporation model, the fraction of J/1 coming
from x. decays should be process-independent. But the experimental data both
in fixed-target experiments in pN and 7N collisions and also in pp collisions at the
Tevatron gather around a central value of 0.3-0.4, while in v-p collisions an upper
limit of 0.08 was obtained [Bar 87].

Since this model gives trivial prediction on .J/1 polarization and fails in pre-
dicting ratios of quarkonium production, we will not discuss this model in later

discussions.
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1.3.1.c Non-Relativistic QCD

The polarization of .J /1 has been calculated in non-relativistic QCD by Beneke
and Rothstein [Ben 96]. The production cross section for a quarkonium state H

in the process

A+B—H+X (1.2)
can be written as
1 . .
og — Z/{) dl‘ldl'gfi/A($1)fj/3(1'2)6'(2] — H) (13)
d(ij — H) ZC (1.4)

In Equation 1.3 the summation sums up the contributions by all partons in the
colliding hadrons, and the f; 4 and f; p are the corresponding parton distribution
functions (PDF). The coefficients C%jQ[n] in Equation 1.4 describe the production
of a quark-antiquark pair in a state n and have expansions in a4(2mg). The
parameters (OX) describe the subsequent hadronization of the Q@ pair into the
quarkonium state H. It is important to test the universality of the production
matrix elements (OX) because this is an essential prediction of the factorization
formula (1.4).

In the calculation of Beneke and Rothstein, the following intermediate c¢ states

are considered: (1,2S1), (8,'Sy), (8,2P;), and (8,3S;). For each intermediate state
16



the ratios of longitudinal to transverse polarized quarkonia were computed. To
obtain the total polarization, the various subprocesses have to be weighted by their
partial cross sections. Weighting all subprocesses by their partial cross sections

and neglecting the small ¢’ feed-down, a sizable polarization is obtained:

0.31 <A <0.63

However the existing data show no sign of polarization. Thus NRQCD in-
cluding the color-octet contributions also gives a wrong prediction on the .J/v
polarization problem, and one has to seek for explanations from higher-twist pro-

cesses.

1.3.2 Fixed-Target .J/¢ Polarization Experiments
1.3.2.a E537

Fermilab experiment E537 has measured the differential cross section do/d cos 0
for J/v production in 7~ N interactions and in pN interactions at VS =153 GeV
in the region xrp > 0 [Ake 93]. Fitting the angular distribution to the form of
Equation 1.1, A = —0.115 £ 0.061 for p and A = 0.028 £ 0.004 for 7~ were ob-
tained. The data sample used to obtain this result contained 12530 J/1) events

produced by the 7 beam and 33820 .J/v events by the 7~ beam.

1.3.2.b E672/E706

Fermilab experiments E672/E706 have measured the differential cross section

do/d cos 8 for .J /v production in 7~ Be collisions at v/S = 31.5 GeV in the region
17
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0.1 < zp < 0.8 [Gri 96]. Fitting the angular distribution to the form of Equation
1.1, A = —0.01 + 0.08 was obtained. The data sample used to obtain this result

contained 9600 J/¢’s.
1.3.2.c ET71

Fermilab experiment E771 has measured the differential cross section do/d cos
for J/v production in pSi collisions at V'S = 38.8 GeV in the region —0.05 <

xp < 0.25 [Ale 97]. This is the only published polarization measurement for .J/v

produced with a proton beam. Fitting the angular distribution to the form of
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Equation 1.1, A = —0.09 4+ 0.12 was obtained. The data sample used to obtain

this result contained 11660 .J/v’s.

1.3.2.d Chicago-lowa-Princeton

A dedicated J/v decay angular distribution measurement was performed at
Fermilab using a 252 GeV pion beam incident on a tungsten target [Bii 87]. The
data sample contains 1600000 J/1 events from a 7~ beam and 600000 .J/1 events
from a 7" beam. The data are in the kinematic range zr > 0.25 and pr < 5.0
GeV. To determine the J/1 decay angular distribution, the data were divided into
fifteen regions of zp, five regions of cosf, and five regions of ¢ in the kinematic
range xp > 0.25, —1 < cosf < 1, and —7 < ¢ < w. For each bin of zp, cos®b,
and ¢ the raw ptp~ mass distribution was fitted by a seven-parameter function

involving a Gaussian distribution for the .J/¢ and ' and a quadratic polynomial
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plus an exponential of a first-order polynomial for the continuum background.
The number of J/¢’s in the 375 bins of 2, cosf, and ¢ were then corrected for
acceptance and for each of the fifteen regions of 2 the J/¢ angular distribution

was fitted by the general form [Lam 78|

1
d*c/dcosOdp ~ 1+ Xcos® 0 + pusin 20 cos ¢ + ol sin? 0 cos 2¢ (1.5)

The A, 1, and v are consistent with zero over a wide range of xr. Note that A

approaches —1 at high xr. This behavior was also observed in a Drell-Yan con-
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Table 1.1: Summary of the experimental and theoretical results.

Experiment reaction NG Tp range A
E537 p+ W 153 GeV xp >0 —0.115 4+ 0.061
E537 ™~ + W 15.3 GeV xp >0 0.028 4+ 0.004
E672/706 7~ + Be 31.5 GeV 0.1 <zp<0.8 —0.01 £0.08
E771 p+Si 388GeV —0.05<zxp<0.25 —0.09 £0.12
CIP T+ W 21.7GeV  025<zp<1.0 ~0,— —1 at large zp
Theory xp range A
CSM xp >0 ~ 0.25
CEM xp >0 0

NRQCD zp >0 031<X<0.63

tinuum production experiment [Ale 86]. Table 1.1 summarizes the experimental

and theoretical results of .J/v¢ polarization.

1.4 Fermilab E866 Measurement

E866 at Fermilab was designed to measure the %/d asymmetry in the nucleon
sea. After the run ended in March, 1997, additional measurements were performed
in the run extension period. Two major topics in the run extension were angular
distribution of the J/v¢ decay and nuclear dependence of .J/v¢ production. The
work presented here is based on the data sample collected during a four week
dedicated beam-dump run, from which the angular distribution of the .J/v¢ decay

in the dilepton channel was studied. This angular-distribution measurement is
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unique since no high-statistics proton-induced data exists. Also, the .J/v¢ produc-
tion diagrams are different for pN and 7N interactions. A total of 10 million .J/1’s
(with ~ 1% of unseparated v"’s) were collected, and the kinematic coverage of the
data extends over zp > 0.2, pr < 5GeV, and —0.95 < cosf < 0.95. The quantity
of the data sample has allowed us to present the A parameter in Equation 1.1 in
seven regions of xp and four regions of py. The results could provide a test of
the color-octet mechanism, and hopefully will improve our understanding of the

higher-twist effects.
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2. EXPERIMENTAL APPARATUS

The experiment E866 was performed at the Meson-East experimental area of
Fermi National Accelerator Laboratory. The spectrometer, shown in Figure 2.1,
was a modified version of the E605/E772/E789 spectrometer. This spectrometer
was designed to detect dimuon events with forward xp, though certain combi-
nation of target position and analyzing magnet settings allows finite negative-
xr acceptance. The spectrometer primarily consisted of three dipole magnets,
seven hodoscope planes, eighteen drift-chamber planes, and three proportional-
tube planes. The hodoscope planes were used to provide the trigger information,
the drift-chamber planes were used to find the trajectories, and the proportional-
tube planes, which were also part of the trigger system, were used to identify
muons. The SM3 magnet measured the momentum of the muon pairs while the
SMO0 and SM12 magnets allowed us to select the desired mass range. The charged
particles produced in the target were split according to the sign of their charges
while going through the set of three magnets.

A thick hadron absorber wall was installed in SM12 for the experiment so that
the long-lived hadrons (mainly pions) can be stopped before hitting station 1. The
absorber wall consisted of Cu, C, and (CH,),, blocks, and gave a hadron attenua-
tion factor of e=?. Not shown in Figure 2.1 is the copper beam dump sitting in
front of the hadron absorber wall. The beam dump was used to stop the 800 GeV

proton beam. For the angular distribution measurement we used the beam dump
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Figure 2.1: The E866 spectrometer.

as the target. There were also an electromagnetic and a hadronic calorimeter and
a ring-imaging Cherenkov counter (RICH), which, however, were not operating
during this experiment. The RICH counter was filled with helium bags to reduce
multiple scattering. This chapter will discuss only these components that were
needed for this study.

Throughout, we will make reference to the spectrometer-fixed coordinate sys-
tem. The E866 coordinate system aligns the Z-axis horizontally with the accel-
erator proton beamline and the Y-axis with the vertical direction. The X-axis is
then chosen to form a right-handed Cartesian system. The positive Z direction is

chosen to be same as the beamline direction, which is also referred to as “down-
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stream,” and the positive Y direction is chosen to be up. The origin is located at

the center of the upstream face of the SM12 spectrometer magnet.

2.1 Accelerator and Beam

The high-energy proton beam was produced in the Tevatron, which is a super-
conducting proton synchrotron. Protons were first accelerated by a pre-accelerator
up to about 700 KeV. These protons were then accelerated in a linear accelerator
to about 400 MeV. Subsequently, a Booster Ring boosted the proton energy to 8
GeV. Protons were then injected into the main ring, located in the same tunnel as
the Tevatron but constructed from conventional magnets, in which protons could
reach an energy of 400 GeV before being transferred into the superconducting
ring, where the protons were accelerated to 800 GeV. After the proton beam was
accelerated to 800 GeV, it was extracted and split by the switchyard for sending
three streams of proton beams to the Meson, Neutrino, and Proton beam lines
for the fixed-target experiments.

Protons in a spill were bunched into RF buckets separated from one another by
18.9 ns, with bucket length ~ 1 ns. Each spill contained about 10° buckets. This
small scale beam structure was due to the Tevatron accelerating radio frequency
of 53 MHz. A square wave signal at this frequency, called the RF clock, was used
to synchronize the E866 electronics with the Tevatron beam structure. It took ~
25 seconds to accelerate a fill of protons up to 800 GeV. These protons were then

extracted from the accelerator for 20 seconds. After that, the superconducting
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magnets ramped down for 15 seconds. The entire cycle time was approximately
one spill per minute. Typical proton intensities in the Tevatron were 1 — 2 x 103
protons per spill.

Within the Meson area, a three-way split divided the proton beam between the
Meson-East line and the rest of the Meson lines. To monitor the beam intensity,
luminosity, position, and beam-spot size, several beamline detectors and monitors
were used. During the beam-dump running mode the typical beam intensity was
6 * 10'° protons per spill. The beam intensity was monitored by an ion chamber
located in the ME3 sector (IC3), a secondary-emission monitor located in the
MEG6 sector (SEM6), and a beam Cherenkov monitor. Both the size and the
position of the beam were monitored by segmented wire ion chambers (SWICs)
and the Beam-Position Monitor (BPM). The beam luminosity was monitored by
the AMON and WMON scintillation counters, which were installed at about 85

degrees from the target position.

2.2 Beam-Dump Target

For this study the beam dump itself was the target. The dump was suspended
from two of the central magnet inserts inside the SM12 magnet, beginning at Z
= 68 inches, extending 168 inches downstream, and ending at Z = 236 inches. In
Figure 2.2 a picture of the beam dump and absorber wall is shown. The beam
dump was made of pure copper with cooling water tubes running through the

sides. There was a 12-inch deep rectangular-shaped hole in the center of the
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upstream face of the dump to help contain backscattered particles, so actually
the beam protons did not hit the dump until Z = 80 inches. This still left 156
inches thickness of copper, which is equivalent to 26.5 interaction lengths for p +
Cu collisions, to stop the protons and secondary particles. The probability for a
primary proton to punch through the entire dump was less than 4 x 10~'2. Most
primary protons would interact within the first few interaction lengths. Secondary
particles from the primary interaction would further interact to form showers and
eventually be stopped in the dump, but the high-energy muons produced would
penetrate the entire dump with little interaction since muons are not strongly-
interacting particles. However, these muons would still lose energy and suffer
multiple scattering on their way through the dump, and thus added uncertainties

to the reconstructed zp and pr.

2.3 Spectrometer Magnets and Absorber Wall

Two dipole magnets, SM12 and SM3 were used in this study (the current of
SMO was set to zero during the beam-dump data taking). The magnetic fields
of these magnets were oriented horizontally. The field strengths of the dipole
magnets could be configured to optimize the mass acceptance for J/i’s. The
bending magnet used for this study was SM12. The length of the SM12 magnet,
made of iron, was 567 inches. The magnet produced an average horizontal field
of up to 1.3 Tesla at a maximum current of 4000 Amperes. This corresponds to a

7-GeV transverse momentum kick to the charged particles which traveled through
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its entire length. In this study, SM12 was set to 2800 Amperes and 2040 Amperes
during two separate data-taking periods, delivering a transverse-momentum kick
of 4.2 GeV and 3.1 GeV, respectively.

The momenta of the muon tracks were measured by the analyzing magnet
SM3. The location of the SM3 magnet was between Station 1 and Station 2, as
shown in Figure 2.1. SM3 delivered a transverse momentum kick of 0.914 GeV
to the charged particles traveling through when operated at its maximum current
of 4260 Amperes. The field was uniform enough so that the reconstruction of a
particle trajectory through the field volume can be described by a single bend-
plane approximation.

The absorber wall was located inside the SM12 magnet directly behind the
beam dump. It filled the SM12 magnet completely in the x and y direction.
The absorber wall was constructed of one 24-inch section of copper, three 27-inch
sections of carbon graphite, one 27-inch section of carbon-polyethelene compound,
and two 36-inch sections of polyethelene.

Both magnets were filled with helium bags to minimize the multiple scatterings

of the muons.

2.4 Detector Stations

There were four detector stations in the E866 spectrometer, denoted as Sta-
tion 1 to 4. Station 1-3 each consisted of hodoscopes and drift chambers, while

Station 4 consisted of hodoscopes and proportional tubes. Those stations record
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the passage of charged particles in space and time across their active area. To-
gether with the information provided by the magnet field maps, this allowed the
4-momentum of the individual tracks to be reconstructed. Stations 1-3 were used
for triggering and tracking, while Station 4 was used for muon identification and
triggering.

2.4.1 Drift Chambers

Each one of Stations 1-3 consisted of 6 planes of drift chambers. The 6 planes
were arranged in pairs with parallel wire orientation. The second plane of a pair
had its wires offset by half the cell size of the drift chamber. The upstream
plane of each pair was denoted as the “unprimed” plane, while the downstream
plane was denoted as the “primed” plane. The Y-Y’ pair of each station held the
wires horizontally to measure the Y-intercept of the tracks, while the V-V’ and
U-U’ chambers had their wires tilted at —14 (a slope of —0.25) degrees and +14
(a slope of 0.25) degrees from the X-axis respectively. These planes determined
the X-intercept of the track and also provided a check on the Y-intercept. The
configuration of the drift chambers are given in Table 2.1.

The drift chambers were all operated with a gas mixture of 49.7% argon, 49.6%
ethane, and 0.7% ethanol by volume, which was mixed at a constant 25 °F. The
Station-1 anode wires were made of gold-plated tungsten wire, while Stations 2
and 3 used silver-coated beryllium-copper wires. All the anode wires were 25 um

in diameter. The cathode wires for all three stations were silver-coated beryllium-
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Table 2.1: Drift chamber parameters. The unit length is one inch.

detector Z-position No.of wires cell size aperture(XxY) operating voltage
V1 724.69 200 0.25 48 x40 +1700
V1 724.94 200 0.25 48 x40 +1700
Y1 740.81 160 0.25 48 x40 +1700
Y1’ 741.06 160 0.25 48 x40 +1700
U1 755.48 200 0.25 48 x40 +1700
U1’ 755.73 200 0.25 48 x40 +1700
V2 1083.40 160 0.388 66x51.2 —2000
V2 1085.52 160 0.388 66x51.2 —2000
Y2 1093.21 128 0.40 66x51.2 —2000
Y2' 1095.33 128 0.40 66x51.2 —2000
U2 1103.25 160 0.388 66x51.2 —1950
U2’ 1105.37 160 0.388 66x51.2 —1975
V3 1790.09 144 0.796 106x95.5 —2200
V3 1792.84 144 0.796 106x95.5 —2150
Y3 1800.20 112 0.82 106x91.8 —2200
Y3 1802.95 112 0.82 106x91.8 —2200
U3 1810.24 144 0.796 106x95.5 —2200
U3’ 1812.99 144 0.796 106x95.5 —2200
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copper wire with a diameter of 62.5 pm. The absolute operating voltages were
between 1700 and 2200 volts, which gave a typical drift velocity about 50 pm/ns.

The signals of these chambers were read out by a fast amplifier and discrim-
inator system. Single-hit TDCs (Time-to-Digital Converters), which only record
the first hit on the wire during an event, were used to measure the drift time. The
combination of good hits together with their associated drift times in all three
views gave a “triplet” hit for a station. The bank of the triplets was saved to

provide information for the track reconstruction.

2.4.2 Hodoscopes

Associated with the drift-chamber planes, there were also hodoscope planes
in each tracking station. These hodoscopes provided fast tracking signals for use
in triggering. In Stations 1, 3, and 4 there were two hodoscopes planes which
measured the X and Y intercepts of the tracks, while in Station 2 there was only
one hodoscope plane. Each hodoscope plane was arranged into two half-planes
of parallel scintillator paddles, which were attached to photomultiplier tubes via
plexiglass light guides. During operation, each paddle only gave a single bit of
signal (one or zero).

The hodoscope planes were named according to the tracking station they be-
longed to, preceeded by X or Y depending on the orientation of the paddles. For

example, “Y3 hodoscope” referred to the Station-3 hodoscope plane in which 2x13
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Table 2.2: Hodoscope plane layout. Dimensions are in inches.

detector Z-position No. of counters cell width aperture XxY

Y1 769.78 2x16 2.5 47.50x40.75

X1 770.72 12x2 4.0 47.53x40.78

Y2 1114.94 2x16 3.0 64.625x48.625
X3 1822.00 12x2 8.68 105.18x92.00
Y3 1832.00 2x13 7.5 104.00x92.00
Y4 2035.50 2x14 8.0 116.00x100.00
X4 2131.12 16x2 7.125 126.00x114.00

scintillator detectors was positioned horizontally and separated into left and right

side. The parameters of the seven hodoscope planes are given in Table 2.2.

2.4.3 Proportional Tubes

Station 4 was also called the muon station. It was located downstream of
the calorimeters and consisted of two hodoscope planes (Y4,X4) and three pro-
portional tube planes(PTY1, PTX, PTY2). Each of the three proportional tube
planes had two layers of 1x1-inch cells. These two layers were offset by a half-cell
spacing to cover the dead region between the adjacent cells. The proportional
tubes used the same argon/ethane/ethanol gas mixture as the drift chambers.
To minimize the probability of hadron punch-through, an absorber wall (3 feet of
zinc and 4 inches of lead) was placed between the calorimeter and the muon detec-
tor. Furthermore, 3-foot thick concrete walls were placed between PTY1 and X4,
and between PTX and PTY2. This provided a total of 16.6 interaction lengths

upstream of Y4. Thus the only charged particles which could reach Station 4
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Table 2.3: Proportional tube parameters. All dimensions are in inches.

detector Z-position No.of wires cell size aperture XxY

PTY1 2041.75 120 1.0 117x120
PTX 2135.875 135 1.0 135.4x121.5
PTY?2 2200.75 143 1.0 141.5x143

detectors were the muons. Signals from the cell of the proportional tubes were
amplified and shaped by the attached pre-amplifier/discriminator cards. Signals
exceeding the threshold voltage were sent to the Coincidence Registers(CRs) to
indicate the arrival of muons. The parameters of all proportional tube planes are

given in Table 2.3.

2.5 Trigger System

2.5.1 Trigger-System Hardware

A new trigger system was implemented for E866 data taking [Haw 98]. A
block diagram of most of the trigger system is shown in Fig. 2.3. The major

components of the trigger system are described in this section.

2.5.1.a Trigger Matrix Module

Scintillator counters were used to provide input signals for the trigger system.
Signals from the photomultiplier tubes attached to the scintillator counters were
brought to LeCroy 4416 16-channel discriminators via coaxial cables. Each dis-
criminator output was synchronized to the accelerator RF signal and shaped to
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a fixed width of 15 ns by pulse stretchers, and then fanned out to Coincidence
Registers (CRs), Terminator/OR modules, and the Trigger Matrix (TM) modules.

The Trigger Matrix modules were the core of the trigger system. The pulse-
stretcher outputs were grouped as a half-bank (right or left) of Y1, Y2, and Y4
hodoscope planes. These groups were sent as inputs to the Trigger Matrix to
identify tracks of muons originating in the target. Only Y-view hodo-roads were
used here, because events with different Z positions and momentum had different
“roads” in the Y view under the deflection of the bending magnets. This Trigger
Matrix was conceptually a lookup table loaded to a set of six 256x4-bit ECL
SRAM chips. All tracks of interest defined a set of valid “roads” going through
the hodoscope planes. These roads were identified using a Monte Carlo simulation
for muon tracks coming from the target, and thus a “map” of these roads was
produced. The “map” was then written into a disk file, which was loaded into
the SRAMs by the Data Acquisition (DAQ) online program during the start-run
stage. While taking data, the hits on Y2 and Y4 were combined to form an
“address” whose content were the predictions on Y1, which were compared to the
actual Y1 hit pattern. Any coincidence in the comparison generated the Trigger
Matrix output.

There were four sets of Trigger Matrix modules called MUL, MUR, MDL, and
MDR. They covered different types of valid muon tracks, namely, up-left, up-

right, down-left, and down-right, respectively. For finding the target muon pairs,
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the coincident combination of an up and a down track was required. The output
signals of the Trigger Matrix modules were then sent to the Track Correlator for

further triggering determination.

2.5.1.b Track Correlator

The Track Correlator (TC) modules were designed by Texas A&M University
[Gag 98]. These programmable modules were used to filter specific combinations
of Trigger Matrix, Terminator/OR, and S4XY [42] outputs to trigger on an event.
However, during beam-dump data taking only output signals from the TMs were
of interest. Four 16-bit patterns, according to the desired trigger conditions,
were preloaded into a 2'® x 4 bit SRAM chip inside a TC during the start-run
stage. Whenever the output combination of the TM modules matched one of
the preloaded bit patterns, the TC would, prescaled to the desired frequency and
synchronized with the RF clock, send out a signal to the Master Trigger OR
module to notify the arrival of an interesting event. Each SRAM chip could be
programmed with up to four independent trigger conditions.

There were three main Track Correlators which were able to trigger on an
event to start the DAQ. The first TC, called Physics TC A, was programmed to
select two-tracks events, like-sign or unlike-sign. The second TC, named Physics
TC B, was designated for left-right efficiency studies, which involved the use of

X hodo planes and single muon events. The third module, which was used to
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Table 2.4: Correspondence of the SRAM chip bit to various input sources. The
sources were connected to the Physics TC A B modules.

Signal Origin TC SRAM bit

S4UL1 bit0
S4UL2 bitl
S4DL1 bit2
S4DL2 bit3
S4UR1 bit4
S4UR2 bith
S4DR1 bit6
S4DR2 bit7
MUL bit8
MDL bit9
MUR bit10
MDR bitll
X134L bit12
X134R bit13
- unused - bit14
- unused - bitl5

trigger on cosmic rays to diagnose the trigger and DAQ systems, was called the
Diagnostic TC. It also provided the measurements for scintillator efficiencies.

If the inputs to the Track Correlator fulfilled the triggering criteria, a Trigger
Generate Input (TGI) signal would then be sent to the Master Trigger OR by
the TC. The Master Trigger OR would then synchronize this trigger signal and
the drop of DAQ System Busy with the RF clock to send out a Trigger Generate
Output (TGO). Triggers were thus inhibited during event readout; the difference

of TGI and TGO counts would provide information on readout dead time.
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Table 2.5: Prescale factors and trigger descriptions for Physics TC module. The
“*7 represents a logical AND and the “+” represents a logical OR.

Trigger name prescaler factor description
PhysA1l 1 (MUL*MDR) + (MUR*MDL)
PhysA2 1 (MUL*MUR) + (MDL*MDR)
PhysA3 1 (MUL*MDL)
PhysA4 1 (MUR*MDR)
PhysB1 10 (X134L*X134R)
PhysB2 1000 MUL + MDL + MUR + MDR
PhysB3 0 -
PhysB4 0 -

2.5.2 Trigger Firing Criteria
2.5.2.a PhysA Trigger

From Table 2.5 the definitions of PhysA1,2,3,4 triggers are self-explanatory.
PhysAl trigger required that two tracks went through two diagonally-opposite
quarters of the spectrometer, while the PhysA3 and PhysA4 required that two
tracks went through the same side, left or right, of the spectrometer with one
track going up and the other going down. These tracks were identified as unlike-
sign muon pairs and were treated as possible candidates of target events. The
PhysA2 trigger required that both tracks went up or down, and thus gave like-
sign muon pairs. This information was especially important for rate-dependence

studies in extracting cross sections.
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2.5.2.b PhysB Trigger

The Physics TC B was used for recording events for studies. In the PhysB1
trigger, the symbol “X134L(R)” represented a track that went through the left(right)
side of X1, X3, and X4 hodoscope planes. The signals fed into the TC B were
outputs of some Terminator/OR modules, whose outputs represented the log-
ical ORs of the signals of the X hodo scintillators. The trigger requirement,
X134L*X134R, was designed to measure the random muon coincidences. The
other trigger PhysB2 only required a single hit on any of the four quarters to fire.

It had a prescale factor of 1000 and was used to measure the rate of single muons.

2.6 Data-Acquisition System

The Data-Acquisition System could be divided into three parts by functional-
ity: event readout, data archiving, and online analysis. The first part was based
on a Nevis Transport system, the second was a VME-based data-transferring and

controlling system, and the third was built on the SGI workstations.

2.6.1 Readout System

The backbone of the E866 readout was a Nevis transport system [Kap 82].
All detector subsystems ultimately fed data into the Transport. The subsystems
included Time-to-Digital Converter (TDC) readouts from drift chambers and Co-
incidence Registers (CRs) from hodoscopes and muon proportional tubes signals.
Bus arbitration was maintained by a hard-wired daisy chain, with the bus mas-
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tership determined by the Carry signal. This scheme not only prevented multiple
subsystems from attempting to place data on the Transport simultaneously, but
also guaranteed that events appeared on the readout bus in a well-defined order.
The data bus was 16-bit wide, and the system clock was set to 10 MHz. All the
data fed into the Transport Bus were then transferred to a VME-based archiving
system [Car 91].

Upon receipt of the TGO signal, the first module in the Transport Bus Carry
chain, the Event Generator Source (EGS), would raise the System Busy signal
to inhibit any further triggers and take control of the Carry signal. The EGS
then put a special “first-word” into the Transport bus to indicate the beginning
of a new event in the data stream. After a few more words from the EGS, the
Carry signal was passed to the first branch of the readout subsystem to begin
transferring event data into the Transport.

Upon receipt of the TGO signal, the EGS module also fanned out “START”
signals to CRs and TDCs to begin digitizing the pulse signals. For each hit in
the hodo or prop tube the CR would generate one word in the event output,
containing the scintillator ID or wire number of the muon proportional-tube hit.
Each event also contained a record of which trigger caused it to be readout via
the Trigger Bit Latch (TBL). In addition to the CR’s, each TDC would begin
incrementing a Gray-code counter once every 4 ns upon receiving the START

signal. The incrementing process would be stopped by the amplified signal from
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the drift chamber. Each hit in the drift chamber would also produce a one-word
output, containing the wire number of the hit and the Gray-code value of the
TDC timer. This measured the drift time. All the data were transferred into the

Transport bus in the Carry chain order.

2.6.2 Data Archiving System

Events from the Transport bus streamed into the VME through a pair of
“ping-ponging” triple-ported VME high-speed memory boards by way of a front-
panel ECL interface. Interrupt-driven software would initiate DMA transfers of
packets of events from the high-speed memories across the VME bus into a 128-
megabyte ring buffer. This buffer was continuously being drained across the VME
bus into a single-board computer by a concurrent task which performed all the
data formatting. From there, formatted packets of events were queued in a small
pool for distribution to the taping subsystem, where up to four Exabyte 8mm
tape drives would record the data.

Unlike in E789, the communications to the readout system and the run-control
capabilities were all built on the VME single-board computer in E866. In addition,
the scaler data were injected into the data pipeline, from the CAMAC system,
as regular logical records on a spill-by-spill basis. These scalers included target,
beam, magnet parameters and counts from varieties of trigger conditions. A small
fraction of event packets were fanned to the UNIX workstations for online data

sampling and analysis. This provided the capability of online monitoring.
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For the beam-dump running, the average data-taking rate was about 20000
events per spill. The average event size during the beam-dump run was 192 16-bit

words.

2.6.3 Data Monitoring System

The E866 online database system was based upon the ADAMO library dis-
tributed by CERN, with a graphical interface package called “PinKy.” The
database for E866 recorded various data streams, including the beginning-of-run
(BOR), end-of-spill (EOS) scalers, and beamline data (EPICURE). The online
monitoring tools included 1) “runstatus,” a graphical display of certain critical
data (magnet settings, beam intensity, luminosity, live-time, and duty-factor cal-
culations) updated at each EOS, 2) “scan,” a graphical display of scalers refreshed
at each EOS, 3) “plot,” a plotting tool for monitoring any entity stored in the
database, 4) “review,” a tool for fetching data for series of runs for plotting or
exporting to the CERN Physics Analysis Workstation software package (PAW)
ntuple file, in which the interested quantities of an event were stored in an array,
and 5) “dd,” a tool to receive and distribute data to the backend. These advanced
monitoring tools provided the capabilities for us to reconstruct and monitor a frac-
tion of events online during the data taking. The shift taker could, for example, see
the mass spectrum, hits and multiplicities on the drift chambers and hodoscope

planes, and format errors due to transport readout problems while the data were
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being taken. Thus this capability helped us to diagnose the hardware problems

and improved the quality of the data.

44



Cul|C [ C|C |G |CHZ|CHZ

i)

Plan View (X)

Cu

cC

o
o
]

C | CHZ [CH2

= T

Cu

Flevation View (Y)

Figure 2.2: The SM12 acceptance defining magnet with the absorber wall. The
magnet coils and iron return yoke are only partially shown. The beam dump is
also not shown in the plan view.
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3. MUON-TRACK RECONSTRUCTION

The data recorded in 8mm tapes are logical records and have to be decoded
before using. The decoding was accomplished by the analysis code developed for
E866. The most important information stored in the data stream is actually the
space-time marks of the electronic signals traveling through the detector stations.
These marks in reality present the trajectories of the charged particles. From the
trajectories the kinematic quantities of the particles can then be determined if the
mass of the charged particle and the strength of the magnetic field is known.

In this chapter we will first summarize the data taken in April of 1997 for
this study, and then describe in detail the method of track reconstruction in this

experiment.

3.1 Data-Set Summary

During beam-dump data taking the typical beam intensity request was 6E10,
6 * 10'° protons per spill. The average triggering rate was about 20000 triggers
per spill and the average event size was 192 16-bit words, as mentioned in the last
chapter. A total of 82 magnetic tapes of raw data were used, with an average
of 1.8 Gb of raw data written onto one tape. About 400M events in total were
recoded during the beam-dump run.

One data set was distinguished from another by changing magnet-setting con-
figurations or trigger-matrix configurations. There were four data sets in the

beam-dump data sample. The specifications are given in Table 3.1.
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Table 3.1: Magnet currents and trigger-matrix of different data sets. The magnet
currents are in Amperes. SM0 was off during the beam-dump run.

data sets SM12 current SM3 current trigger matrix
12 —2800 —4230 trigmat.psidump, trigmat.psi2800
13 —2040 —4230 trigmat.psi2000
14 +2040 +4230 trigmat.psi2000
15 +2800 +4230 trigmat.psi2800

The data were taken under two different SM12 settings and two polarities in
order to reduce possible systematic errors. It was known that the incident beam
was not perfectly lined-up with the Z-axis of the spectrometer, so the data show
an up-down asymmetry in the event distribution with respect to the Y = 0 plane.
The flipping of the magnet polarity thus provided crucial information on the
measurement of this asymmetry. The changing of SM12 current also changed the
acceptance of the spectrometer. The consistency on the results obtained from the
two magnet settings would provide a test, since the physics should be acceptance-
independent. Each of the four data sets contained about equal amount of data.

Data set 12 was further divided into data set 12a, 12b, and 12c, and data
set 15 was divided into 15a and 15b, according to the incident beam angle and
trigger matrix file. However the beam angle was only determined after the data

were analyzed, so not till the later chapters will such division be used.
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3.2 Track Reconstruction

In this section the methodology of track reconstruction applied in the K866
analysis is described. For each event, the procedure can be considered as two main
steps. The first step involved track finding, which was based on the drift-chamber
hits and muon identification from the proportional-tube signals, and track fitting,
in which the possible candidates of track segments between Stations 2 and 3
were found. In the second step a trace-back procedure was applied to the track
candidates, so that the complete trajectories through the SM12 and SMO to the

target position were reconstructed.

3.2.1 Identifying Drift Chamber Hits

Each drift chamber station consisted of six planes: Y, U, V, and their as-
sociated prime planes Y',U’.V'. When a charged particle traveled through the
drift-chamber array in one station, correlated signals from different planes were
produced. The subroutine DCTRIPS searched station 3 and station 2 for the
correlated hit patterns. Only the patterns that consisted of at least 4 crossed
hits whose cross-intersections were very close to a space point were registered. A
triplet pattern was defined as having hits in all three views, while a doublet pat-
tern was defined as having hits in two views only. An associated hit was defined

as a particle that hits both the prime and unprimed planes.
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3.2.2 Fitting the Tracks

Once all the valid hit patterns were registered, the next step was to link the
registered hits from Station 3 and Station 2. The subroutine DCTRAX looped
over the triplets and doublets in Stations 2 and 3 to construct the track candi-
dates, called DC track segments. Several constrains were imposed on the track
candidates: 1) if a doublet in one station was found, it was only allowed to connect
to a triplet from another station; 2) at least 3 associated hits from Stations 2 and
3 were required to construct the track segment; 3) the segment was extrapolated
to Station 4 and was required to fire at least 3 out of 5 planes in the desired
location; 4) the segment was approximately pointing to the target location. For
this study, very loose cuts were made to confine the segment vectors, and muon
identification was done in DCTRAX.

The next step was to link the track segments with the identified hits in Station
1. The subroutine WCTRAX required each of the track segments to be lined up
with a valid hit of Station 1 in the X-Z view (non-bend plane) within a vertical
band. Only hits within this Station-1 window were further considered. A single
bend-plane approximation was used to account for the SM3 momentum kick.
Once a valid hit was identified in station 1, the entire track was refit into two
straight-line segments joint at the bend plane. The fitting routine, FITTIME,
using all 18 planes of drift chambers to fit the track, and routine SM3 calculated

the momentum kick and the Z-coordinate of the bend plane. The result of this
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final fit gave the coordinate of the track at the SM3 bend plane, the Y-slopes
before and after the bend plane, and the X-slope at the intersection point. With
the knowledge of the SM3 field map, together with the slope information, the

track momentum at Station 1 was determined.

3.2.3 Tracing Back through SM12
3.2.3.a Energy-Loss Correction

From the SM3 bend plane to the target position, the track was reconstructed
in a routine called PBSWIM. Given the field map of SM12, the coordinates and
the momentum of the track were reconstructed in the field-map grid step by the
routine TRACER. During the procedure of tracing back, the effect of energy loss
in the absorber wall and in the beam dump material was taken into account. The

lost energy, calculated by an empirical formula

Eloss = a + b * log(Py,) + ¢ x log(P;,)? (3.1)

for each layer of the absorber materials, was added back to the track after TRACER
had traced through that layer. The coefficients in the formula were determined
from dedicated Monte Carlo studies. The total energy loss in the beam dump was
estimated in the same way. For each step inside the dump, a fraction of the total

estimated energy loss, proportional to the step size, was added back to the track.

51



3.2.3.b Multiple Scattering

Due to multiple scattering, it was impossible to trace back to the exact event-
producing location. So it was assumed that all the events came from a point
located at one interaction length into the dump. In this case Z;, 4t Was set to
86 inches in the E866 coordinate frame. To correct for the effects of multiple
scattering, a scattering bend-plane approximation was used. After the initial
traceback, the intercepts of the track at Zi,4e were compared with the beam

centroid,

dX = Xtarget - Xcentroida (32)
dY = Y;‘,arget - }/;entroid- (33)

Based on these differences, an angular correction to the track direction at the

scattering bend plane (located at Zgequer) was calculated:

dg:v - dX/(Ztarget - Zscatter)a (34)

dgy = dY/(Ztarget - Zscatter)- (35)

After the angular correction was applied, the track was traced again to Zgger
starting from Zg.uue-- The iteration procedure was repeated until the intercept
errors became negligible. The value of Z;...r was determined by optimizing the

angular resolution at the target point.
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3.2.3.c Additional Angle Corrections

Further Monte Carlo study had shown that the single scattering bend-plane
approximation actually over-calculated the reconstructed angle, as shown in Fig-
ure 3.1.

In order to reconstruct the opening angle correctly, an empirical formula, the
angle deviation expressed as a polynomial function of the reconstructed angle,
was used to adjust the angle that came out of the initial scattering-plane approx-
imation. The formula was purely empirical and relied completely on Monte Carlo
studies, so it was important to test whether these corrections gave back the thrown
angular distribution for Monte Carlo events after the events were analyzed, even
though this self-consistency check is only necessary but not sufficient. Figure 3.2
shows the reconstructed cos 6 distributions for both magnet settings. Those plots
were obtained from the thrown-reconstructed events divided by the unsmeared
acceptances. The function pl x (1 + p2 * cos?#) was used to fit the plots to test
whether there is any systematic bias while reconstructing the cos distributions.
As a result, a nearly flat distribution of cos @ (A = —0.02 +0.017) is recovered for
the 2040Amp data set, and A = 0.02 £ 0.018 for the 2800Amp data set.

It was also important to test with Drell-Yan data, where we believe we know
the angular distribution, to search for additional systematic problems not revealed
from Monte Carlo studies alone. The angular distribution study of Drell-Yan

events as a confidence check will be presented in Chapter 5.
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4. DATA ANALYSIS
From the raw-data tapes to the final physics results, several types of computing
hardware and software were used. The whole procedure can be divided into three

passes in the analysis, which will be described in this chapter.

4.1 Pass-1: Fermilab IBM Farm

The first pass of data analysis was performed on the Fermilab parallel com-
puting farms. The computing farm system is a cluster of IBM workstations which
can distribute the raw data into all the computing nodes and analyze the data
simultaneously. The events passing the first-pass analysis were then written on to
Data Summary Tapes (DSTs) for the second-pass analysis.

The tasks of the first-pass analysis were mainly to find dimuon events origi-
nating in the beam dump within the desired mass range. An 18-inch grid SM12
magnet map was used to trace the tracks in this pass, and very loose aperture and
target cuts were applied. However it required the events to have two muon tracks
and the mass of the muon pair has to be greater than 2 GeV. As a consequence

only about 5% of the events passed the cuts and were written onto DSTs.

4.2 Pass-2: Hewlett-Packard Workstation

The second pass of the data analysis was performed on the Hewlett-Packard
Workstation located in New Mexico State University. The inputs of this phase

were DSTs, and the outputs were the ntuple files. The main task of this phase
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of analysis was to reconstruct the kinematics of the DST events as accurately as
possible. A 2-inch grid SM12 magnet map as well as a Y-field map were used
to reconstruct the events instead of the 18-inch map. No other tighter cuts were

applied, but many fine-tuning tasks were done in this pass of analysis.

4.2.1 Determining Tweeks

The “tweek” is an overall correction factor for the magnetic field strength
provided by the field map. The field maps provided by the ANL (Argonne National
Lab) group assumed that the magnets were operated at the preset currents, SM3
at 4260 Amperes and SM12 at 2800 Amperes, for example. But in reality the
operating currents were not precisely equal to the desired currents, and there were
uncertainties in the mapping, therefore it was necessary to apply the corrections
to the magnet maps for analyzing the events or to generate Monte Carlo events.

Since the actual currents were not known, this whole subject relied on care-
ful Monte Carlo studies. There were two unknown quantities to be determined:
the tweek of SM12 and the tweek of SM3. The two conditions used to deter-
mine these two quantities were 1) reconstructed .J/¢) mass and 2) the uniterated
Z-vertex (ZUNIN). By adjusting the magnet map in the MC event-generating
phase, it was required that the reconstructed experimental data have the same
mass and ZUNIN location as the MC reconstructed events; the tweeks used in
the data event reconstruction were the same as in the MC event generation and

reconstruction. Figures 4.1 and 4.2 show the ZUNIN and mass peaks of the real
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Table 4.1: The tweek values of SM12 and SM3 for all the data sets.

Data Set SM12(Amp) SM3(Amp) TWEEKI12 TWEEK3

12 —2800 —4260 1.006 0.986
13 —2040 —4260 1.019 1.002
14 +2040 +4260 1.019 1.002
15 +2800 +4260 1.006 0.986

events and MC events from both magnet settings. The shape of the ZUNIN peaks
is not symmetric around its central value because of energy loss and multiple scat-
tering of the muon tracks. The peaks were fitted to a Gaussian using asymmetric
boundaries, —10 inches to 33 inches, in order to locate the peak centroids without
being affected by the non-Gaussian tails. The mass peaks of the data distributions
were fitted to a second-order polynomial plus a Gaussian function, while the mass
distributions from Monte Carlo were fitted to Gaussians since the Monte Carlo
did not include any background events. As one can see from Figures 4.1 and 4.2,
the agreement between Monte Carlo and the experimental data is satisfactory.

The tweek values are given in Table 4.1.

4.2.2 Determining Beam Positions

During the course of analyzing the raw data, it was found that the beam
centroid was not steadily fixed at a single location over the entire period of running.
The moving range of the centroid is greater than three sigma of the beam profile,

which is 0.14 inches in X and 0.07 inches in Y at the target position, so this was
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due to the beam-line magnet-current fluctuations. A typical reconstructed beam
centroid distribution during one run is shown in Figure 4.3.

Since the angular distribution was affected by the beam angle (a slight offset
of the beam angle will generate a linear term of cos 6 in the final A extraction) and
a single fixed target point in the analysis was not able to account for the angle
fluctuations due to the beam-line movement, the beam centroids at the target
were determined in a spill-by-spill basis by fitting the beam profile of the raw
data at the target position. In the first second-pass analysis, the beam centroid
of each event in each spill was determined by averaging the X and Y coordinates
of the two muon tracks at the Z = 86 inches plane and then saved the centroid
distributions (one for X and one for Y) in a temporary histogram. Then these
distributions were fitted using Gaussian functions to determine the central values.
These central values were tagged with the run number and the spill number and
were saved in a 2-D lookup table. This procedure was applied to every spill of
the raw data. If there were not enough events (the threshold number of events to
perform the fitting was set to 50) in a spill to perform the fit, the centroid value
was taken from the previous spill. If the first spill in a run did not have enough
statistics, the centroid value was set to some default value depending on the data
set. Then a second second-pass analysis was performed, using the centroid values
stored in the lookup table, for each spill of data. The beam angles reconstructed

in this procedure, on a run-by-run basis, were approximately constant within a
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Table 4.2: Beam angles of each data set.

Data set X angle(1E-3) Y angle(1E-3)

12a 0.12 —1.09
12b 0.11 —1.05
12¢ 0.11 —0.94
13 0.00 —0.76
14 —0.02 0.11
15a 0.10 0.12
15b 0.05 0.31

data set. Some runs within a data set had very different angles and had to be
treated separately. Data set 12 was broken into 12a, 12b, and 12c, and data set
15 was broken into 15a and 15b. The reconstructed beam angle for each data set

is shown in Table 4.2.

4.2.3 Determining Beam Angle

The determination of the beam angle for each data set involved two phases. In
the first step we obtained the initial value of the angle recovered by plotting the
momentum vector from the ntuple. Note that the beam-centroid-fitting procedure
described in the previous section had to be applied first. Then the second-pass
analysis was done again using the initial angle. It was found that after one it-
eration the reconstructed angles converged within 0.03 mrad. Thus a second
iteration was not necessary. Figure 4.4 shows the beam angle reconstructed from

the experimental data set 15b as an example.
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The second step in determining the beam angle was to look at the production-
¢ distribution. The production-¢ (PPHI) distribution was very sensitive to the
input beam angle. Monte Carlo events were generated to compare with the PPHI
plots of the real data. The ¢ distribution of the real data is expected to be isotrop-
ical because both the beam and target were not polarized, and in the Monte Carlo
the PPHI distribution was thrown isotropically. It was required that the ratio of
the PPHI plots be flat, so there was no ¢-term contribution in extracting the
angular distribution. Usually small changes in the beam angle had to be added
to the Monte Carlo in the generation phase to obtain good PPHI agreement.
However those changes were small compared to the beam angle variation of 0.3
mrad, so it was not necessary to repeat the second-pass analysis. The ratio of
real-data PPHI over MC data PPHI is given in Figure 4.5. The plot was fitted
to pl x sin(p2 + #) + p3. The amplitude shows that the uncertainty of the beam

angle values used in Monte Carlo is about 2%.

4.3 Pass-3: PAW

The third and final pass of the analysis was performed with the Physics Anal-
ysis Workstation (PAW) program. This program provided a way to present a
graphical output of the analysis. The input of this program can either be an
existing histogram file, which is simply a vector, or an ntuple file, which consists

of columns of vectors. When filtering the final candidates, some additional cuts
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were applied to the events. Target vertex cuts and trigger-bit cuts were imposed.
Events originating outside a 2"(X)x2"(Y)x200"(Z) range centered at the nominal
target position were discared. The trigger-bit information TBRAW_CK of each
event was checked to assure that it satisfied the physics-trigger requirements (sat-
isfies Physics Trigger A 1, 2 or 4, see section 2.5.2). Like-sign pairs were discarded
by the trigger cut at this point. As a result, about 94% of events survived the
vertex cut and 91% of events survived both vertex and trigger cuts.

Those events left were then distributed according to their pr and zp values.
The xp range in this study was from 0.25 to 1.0 binned in intervals of 0.1; pr
was binned in intervals of 1 GeV. The last bin of xr combined all the data above
0.85, and the last bin of py included the data having pr > 3.0 GeV. The mass
spectrum, from 2.0 GeV to 7.0 GeV plotted in 50-MeV bins, for each zr and pr
bin was then fitted to a Gaussian plus some background function. The .J/v peak
was described by the Gaussian function, but the background shape varied as the
kinematic range changed. Listed below are the functional forms used to do the

background fitting in this study:

f(z) = exp(pl+ p2xx), (4.1)
f(x) = pl+p2*x+p3*a® (4.2)
flx) = pl/(1+ (x/p2)P). (4.3)
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The uncertainties caused by the background function forms are discussed in section
4.6. The counts of J/v’s in each bin of zr and pr were then determined by the

formula

COUNTS = N x (bin width//2r0) % exp(—(x — centroid)?/20?) (4.4)

where N, centroid, and o are free parameters to fit. The value N + AN returned
from the PAW fitting program provided the population of .J/1’s and the statistical
uncertainty in that bin. Tables 4.3 to 4.6 give the approximate number of .J/vs
in each bin for each data set.

Figure 4.6 shows the reconstructed spectra of some kinematic variables. The
mass spectrum, on the upper-left, presents all the dimuon pairs recorded during
the beam-dump run with masses up to 7.0 GeV. The other three variables, namely
rr, pr, and cos @, are plotted for the events that satisfied the vertex cuts and the
trigger cuts and have a mass in the range between 2.5 GeV and 4.0 GeV. The
purpose of the mass cut was to reduce the contributions from non-J /1 events in
these variables. One can see from the figure that this data sample contains a large

collection of .J/1’s that extend over a wide kinematic range.

4.4 Monte Carlo

To extract J/i¢ angular distributions correctly we rely on good knowledge of

the angular acceptance. Monte Carlo simulation is the standard technique to ob-
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Table 4.3: Number of .J/1’s in each bin of data set 12.

op [pr(GeV) 0-1 1-2 2-3 >3
0.3 322000 292000 78300 16600
0.4 531000 497000 137000 28000
0.5 323000 310000 84800 16900
0.6 142000 139000 36500 6900
0.7 43100 42000 10700 1900
0.8 8800 7800 2200 300
> 0.85 900 900 - -

Table 4.4: Number of J/1’s in each bin of data set 13.

zp [ pr(GeV) 0-1 1-2  2-3 >3
0.3 363000 336000 91800 17800
0.4 244000 232000 66400 14000
0.5 119000 116000 32400 7100
0.6 47500 45900 13100 2600
0.7 13400 13100 3600 700
0.8 2500 2800 700 100

> 0.85 300 300 - -
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Table 4.5: Number of .J/1’s in each bin of data set 14.

v [pr(GeV) 0-1 1-2 2-3 >3
0.3 372000 355000 99300 19100
0.4 244000 243000 71000 15200
0.5 120000 120000 34200 7300
0.6 47600 47300 13200 2800
0.7 13300 13600 3800 700
0.8 2600 2700 800 100
> 0.85 400 300 - -

Table 4.6: Number of J/1’s in each bin of data set 15.

zp [ pr(GeV) 0-1 1-2 2-3 > 3
0.3 260000 235000 62300 13200
0.4 413000 387000 107000 22800
0.5 250000 240000 65200 13400
0.6 109000 106000 27700 5400
0.7 33100 32100 8400 1500
0.8 6400 6300 1500 300

> 0.8 700 600 - -
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tain the acceptance. In the Monte Carlo study the experimental apparatus setup
was programmed as close as possible to the real experiment, and all the apparatus
input parameters, some of which were physically measurable, were tuned accord-
ing to the best of our knowledge. However the physics part of the Monte Carlo
generation, which is the part of real interest, was unknown and relied completely
on theoretical model calculations. The output of the Monte Carlo was then com-
pared with the experimental data, assuming that the simulation of the apparatus
part was reliable and trustworthy. The difference between the Monte Carlo re-
sults and the experimental measurements was then used to improve the various
thrown physics kinematic quantities. The whole procedure was an iterative pro-
cess since the acceptance depended on the thrown distributions, and the thrown
distributions, usually taken from the experimental data distributions, relied on
the knowledge of the acceptance. The accepted Monte Carlo events were stored
in the same format as the raw data, and then were analyzed as the experimental
data. The final output was stored in the form of ntuple files, like the real data.
The acceptance correction of a physical variable to be applied to the experimen-
tal data was given by the reconstructed MC distribution divided by the thrown
distribution.

In this section we will describe the thrown functions of the physical variables

and compare them with the experimental data.
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4.4.1 2z Distribution

xp can be understood as the .J/t¢ longitudinal momentum P, divided by its
maximum kinematically allowed value Pr, arq,, which is approximately equal to
half of the square root of the center-of-mass energy S, in the beam-target center-
of-mass frame. Theoretically the xy differential cross section is of interest because
it can be calculated based on the knowledge of the parton distributions and some
phenomenological models. In this study we used an empirical formula for the

thrown zp distribution for .J/1 within the range 0.25 < xp < 1.0:

P Py
x = R~ , 4.5
F PL,Maw \/§/2 ( )
do/dzr = P3(1—0.827p)%" (4.6)
P3 = 2.784 —10.14xp + 17.812% — 9.585x3, . (4.7)

The third-order polynomial was used to describe better the high-xr part. The
comparison of the Monte Carlo and the real data is shown in Figure 4.7. At each
bin of zp the counts of J/1’s for the real data were obtained by fitting the mass
spectrum to a Gaussian plus a exponential background. The agreement is good
to about 3% for xp < 0.7, which includes 98.2% of all the data. The largest
discrepancy, however, about 20%, for zr > 0.7 comes from the thrown shape in
the Monte Carlo and the background uncertainty in the data. This has no effect

on our results of do/dcosf@dzyr and do/dcos@dzpdpr since these are differential
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quantities. The effects on do/dcosf are also expected to be very small because

only a few events are at that high xp.

4.4.2 pp Distribution

pr is the transverse momentum of the dimuon pair. The origin of pr is under-
stood as a combination of intrinsic transverse motions of the partons inside the
hadrons and higher-order QCD processes. Naively pr was expected to be an inde-
pendent variable from xp, which accounts for the longitudinal part of the dimuon
pair momentum, except at some extreme kinematic ranges where the maximum
available energy becomes a constraint. However experimentally it was found that
< pr > was correlated with zp beyond pure acceptance effects. In our Monte

Carlo code we have the following form for the py thrown function:

do[dpr = pr/(1 + (pr/p0(zr))?)°, (4.8)

p0 = 1.43 + 8.28zp — 15.32% + 2.66z% + 13.92% — 9.2325. (4.9)

p0 was expressed in a polynomial form of xr. This form attemped to fold in
the real physical correlations between xr and < pr > as well as possible residual
acceptance effects. Figure 4.8 shows < pr > as a function of zp for the experi-
mental data and Monte Carlo data. The overall integrated p; distribution from
MC was then compared to the integrated pr distribution of the data; this is shown

in Figure 4.9. For each bin of py, the mass spectrum of the data was fitted to
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a Gaussian plus a second-order polynomial as the background. The number of
J/1’s was then calculated from the Gaussian parameters. The Monte Carlo cos

distribution was weighted according to the normalized ratio of Figure 4.9.

4.4.3 Angular Thrown Distributions

There are three independent angles used to specify the dilepton pair pro-
duction: decay-6 (DTHETA), decay-¢ (DPHI), and production-¢ (PPHI). The
DTHETA variable was defined as the polar angle in the Collin-Soper frame, and
the DPHI variable was defined by the azimuthal angle with DPHI = 0 pointing
up with respect to the Z axis in the C-S frame. The PPHI gave the azimuthal
angle of the virtual photon around the lab Z-axis. PPHI = 0 was chosen to be the
positive X direction of the lab coordinate system and it is a lab-frame variable.
All three angles in this MC code were thrown as flat distributions. The angu-
lar distributions obtained from the final ntuple thus gave the angular-acceptance

shape directly.

4.5 Extracting Angular Distributions

In this section the technique for obtaining the polarization parameter A is

described.

4.5.1 General Procedure

do/dcosOdprdzyr of J/1 was determined by taking the accepted events di-

vided by the acceptance, which was obtained by taking the Monte Carlo cosf
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<P;> vs Xq Data and Monte Carlo

Figure 4.8: < pr > vs xp. Solid line: Data. Dashed line: Monte Carlo.
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zeroth-order polynomial. The result of the fit is the normalization constant used
in the cosf weighting.
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distribution divided by the flat thrown distribution. The statistical uncertainty
of the acceptance was small compared to the statistical uncertainty of the data.
Before being applied to the data, the acceptance curves were weighted by the pr
distribution of the real data. The uncertainties associated with the py thrown
function were thus expected to be minimized. In addition, since the cosf accep-
tances in this study were calculated in small zz and py bins, the uncertainties
due to the shape of the thrown z and py distributions should be reduced. The
acceptance of J/i¢ as a function of cos@ for each bin of zp and pr of the Monte
Carlo simulation is given in Appendix A.

To extract the counts of .J/1, the fitting procedure described in section 4.3 was
applied to each bin of z, pr, and cosf, with bin width being 0.1, 1.0 GeV, and
0.1, respectively. At large x and py bins, the bin width of cos # was increased to
0.2 to give better statistics. The fitting of each histogram is shown in Appendix
B. The number of counts, calculated according to Equation 4.4, in each bin of
cos f was plotted to obtain the accepted cos@ distribution. Each accepted cosf
distribution was then divided by the corresponding acceptance, and the shape of
do/d cos@dprdzrp of J/1 was thus obtained. The cos@ distribution for each bin
of xr and pr was then fitted according to do/dcos® ~ 1+ Acos?6. The fitting

plots of do/d cos @dprdxy are shown in Appendix C.
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4.5.2 Combined Data Set

As mentioned in section 4.2, there were seven data sets differing by the incident
beam angle, the trigger matrix, or the magnet settings. To obtain the final results,
those sets were combined according to the SM12 currents. Data sets 12a, 12b,
12¢, 15a, and 15b together formed the “SM12 = 2800” set and data sets 13 and 14
formed the “SM12 = 2040” set. The events from different experimental data sets

were directly added together, and the average cos 6 acceptance was calculated by

< Acceptance >= " f; X a;(cos 8) /N;(cos 6) (4.10)

with

> fi=1, (4.11)

i

where f; is the fraction of the accepted events of data set i among all accepted
events, and a;(cos8)/N;(cos#) is the cosf acceptance distribution of data set i.
The combined results were obtained by dividing the sum of the accepted events
by the average acceptance. The results for the two different magnet settings were
obtained separately.

In the next chapter and throughout Appendix A to C, the results are presented
for the two magnet settings. The agreement between the two sets of results
provides an important check that our results are not affected by apparatus effects.
Combined results from the two magnet settings are derived to compare with results

from other fixed-target experiments.
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4.6 Uncertainties

In this section two types of errors are discussed: statistical uncertainties and

systematic uncertainties. These different sources of errors are summarized in ta-

bles.

4.6.1 Statistical Uncertainty

Statistical errors in determining A are the direct results of statistical uncertain-
ties in the counts of J/¢. The statistical errors of the acceptance are supressed
by outnumbering Monte Carlo events over the experimental data. The statistical
errors of A were obtained by including only the statistical uncertainties of the .J /v
counting in the A fitting. The A\’s and the statistical errors are shown in Table 5.1

and Table 5.2.

4.6.2 Systematical Errors from Analysis and MC Inputs

To estimate the errors caused by the uncertainties of the magnetic fields, the
tweek values used in the analysis were varied by 1% in the analysis and Monte
Carlo. The 1% uncertainty is a reasonable upper limit for the magnetic-field
strength because the tweek values were tightly constrained by the reconstructed
J/1 mass and the uniterated Z-vertex position. It was found that the \ values
changed by +0.01 as the field strength of SM12 was adjusted, and varied by +0.01

as SM3 was changed.
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The incident beam angle has a strong effect on the cos # distribution. Although
the value of the beam angle was tuned to remove any asymmetry in the ratio plots
of decay # and production ¢ between experimental data and Monte Carlo, the
precise incident angle is actually unknown. To study the effect of this uncertainty,
the beam angle used in the analysis and Monte Carlo was varied by £0.0002, which
is twice the beam angle-spread sigma. The results showed that the A values were
changed by £0.02 for large zr and by 40.04 for small xp.

The target position in the X-Y plane used in the Monte Carlo was an average
value determined from the data. In data reconstruction the beam center was
calculated for each spill. To study this uncertainty, the beam centroid of Monte
Carlo events was moved by £0.1 inch in both the X and Y direction. The circle of
the 0.1 inch confinement was determined by the data distribution. The net effect
on the A values is £0.02.

The py dependence of the cos @ distribution and the impact of the py thrown
function on the cosf acceptance was also studied. The cosf acceptance was
calculated by weighting the py distribution according to the real data. Another
calculation was performed without weighting to the real data. The < py > with
and without weighting differed by 5%, which is compatible with the uncertainties
in extracting the p0 parameter in the pr thrown formula. It was then found that

within this variation, the A values moved by +0.06.
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Table 4.7: Summary of the systematic errors from all the sources.

xrp SM12 SM3 angle centroid < py > fit limit background overall

0.3 0.01 0.01 0.04 0.02 0.06 0.05 0.06 0.109
0.4 001 001 0.04 0.02 0.06 0.04 0.05 0.099
0.5 0.01 001 0.02 0.02 0.06 0.04 0.03 0.084
0.6 0.01 001 0.02 0.02 0.06 0.03 0.02 0.077
0.7 001 0.01 0.02 0.02 0.06 0.03 0.02 0.077
0.8 0.01 0.01 0.02 0.02 0.06 0.03 0.02 0.077
0.9 001 001 0.02 0.02 0.06 0.03 0.02 0.077

4.6.3 Systematical Errors from Peak Fitting

Other contributions to the systematic errors come from the .J/1 peak fitting
process. The A values were found to change slightly with different choices of the
fitting limits. With the same background function, changing the fitting limit was
equivalent to changing the continuum shape within the uncertainties. It was found
that this contributed a +0.03 uncertainty to the systematic errors.

The selection of the background function form also produced systematic errors.
Three different functions, equations 4.1, 4.2, 4.3, were used to fit the continuum
distribution. The uncertainty from different background functions on A is £0.02
for large xr and is about +0.05 for small xr. Table 4.7 gives a summary of the

systematic errors from all the contributions.
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5. RESULTS

The angular distributions of the .J/¢ decay in the dimuon channel have been
measured for the process p+ Cu — J/1 + X using an 800 GeV proton beam. In
this chapter the results are presented, along with comparison to the theoretical

predictions and the results from other experiments.

5.1 Drell-Yan Angular Distribution

In the same data sample used in this study, about 200K dimuon pairs with
mass ranging from 4.0 GeV to 7.5 GeV were also recovered, of which most are
Drell-Yan events. This data sample is of interest because the target was copper
and no angular-distribution measurements had ever been published for the proton-
induced Drell-Yan process in this mass range. Though the amount of data sample
was not enough to study the polarization as a function of zp, it was still useful
to examine the overall polarization parameter A, which was expected to be equal
to unity based on the standard Drell-Yan production mechanism, as a cross check
for the J/v¢ angular distribution results. Below the procedures are described in

more detail, and the results are presented

5.1.1 Random Background

Random muon pairs were the most significant background contamination in
the mass range of interest. The definition of a random pair is that two opposite-

sign muons, which were produced independently by pion decay or other processes,
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coincidentally fired the trigger system and appeared to be a valid target dimuon
event. The random pair distribution could not be measured directly, because the
pairs were indistinguishable from the real Drell-Yan dimuons in the spectrometer;
they were however simulated from the like-sign event distribution by changing
the sign of the Y-momentum of one of the like-sign tracks to calculate other
kinematic variables of the pair, based on the assumption that the probability to
form a random pair is the same as to form a like-sign pair given the first muon
track. Single-muon trigger rates were used to normalize the ratio of like-sign pairs
and the randoms; the like-sign pairs were expected to have the same single-muon
trigger rate as the random pair would have. Figure 5.1 shows some kinematic-

variable distributions of the random pairs.

5.1.2 Random Subtraction and Results

From Figure 5.2 it was understood that the random subtraction was impor-
tant in order to extract the Drell-Yan angular distribution, even for pairs of mass
greater than 5.0 GeV. The normalization factor for the random events was deter-
mined by matching the number of like-sign pairs from the random ntuple file and
from the data, since the random events were generated according to the amount
of like-sign pairs of the data. Then the angular acceptance of the Drell-Yan events
was obtained by a dedicated Monte Carlo run. The cos @ distribution of the Drell-
Yan data, after subtracting out the randoms, was corrected for acceptance and the

angular distribution was obtained. The angular distribution of Drell-Yan events
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in the mass range of 4.0 GeV to 7.0 GeV is shown in Figure 5.3. The rise at the
edges is understood as a resolution problem and the same effect has been repro-
duced by broadening the cos@ resolution. Also, the random pairs show a very
strong rise at large cos#; a slight mismatch in the normalization can result in the
same effect. For these reasons, for the Drell-Yan data the angular distribution was
fitted in the range of —0.7 < cosf < 0.7 in which the systematic uncertainties are
best handled. A result of A = 0.984+0.04 was obtained. This is consistent with 1.0
as predicted. This provided a confidence check for the .J/¢ angular distribution

presented in next section.

5.2 J/¢ Angular Distribution Results

In this section the J/v¢ angular distribution results are presented. The mea-
surements were performed under two different magnet configurations, therefore
different acceptances, in order to minimize the systematic bias. They are effec-
tively two independent measurements. The polarization parameter A in bins of pp
and xp is presented in Tables 5.1 and 5.2, and plotted in Figure 5.4. In the figures
only the statistical errors are shown. The results from the two measurements are
in agreement with each other. This provides a confirmation that the results are

not affected by the specific apparatus settings.
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Table 5.1: X in zp and py bins for the “SM12 = 2040” data. The errors are

statistical only.

TR O<pr<li1 1<pr<?2 2<pr<3 3 < pr
0.25-0.35 0.1534+0.037 0.0674+0.024 0.093 +0.026 0.124 £+ 0.049
0.35-0.45 0.218+0.031 0.015+0.019 0.095+0.026 0.141 4+ 0.056
0.45-0.55 0.146 +0.023 0.035+0.017 0.101 £0.025 —0.052 + 0.049
0.55-0.65 0.1514+0.039 —-0.013£0.027 0.072+0.041 —0.06 + 0.08
0.65-0.75 0.111+0.070 —0.2114+0.046 0.023+0.093 —0.434+0.13
0.75-0.85 —0.17+0.15 —0.22 4+ 0.09 —0.14 +£0.30 -

> 0.85 —0.44 + 0.42 - - -

Table 5.2: A in zr and pr bins for the “SM12 = 2800” data.

statistical only.

The errors are

TR 0<pr<li 1<pr<?2 2<pr<3 3 <pr
0.25-0.35 0.189 £ 0.044 0.135 £ 0.023 0.120 +0.034  0.060 + 0.064
0.35-0.45 0.162+ 0.029 0.095 4+ 0.015 0.170 £ 0.021  0.170 + 0.045
0.45-0.55 0.115+£0.022 0.051 £0.013 0.153 £ 0.020  0.057 £ 0.040
0.55-0.65 0.018 £0.028 —0.053 £0.020 —0.026 +0.028  0.01 4+ 0.06
0.65-0.75 —0.0324+0.049 —-0.174 £0.033 —0.1674+0.059 —0.09+£0.12
0.75-0.85 —0.254+0.10 —0.09 +0.10 —0.21+0.19 -

> 0.85 —0.51+£0.54 - - -

90



1 ¢ =
0.8 0.8 —
0.6 |~ 0.6 —
0.4 0.4 —
0.2 = 4 & A A * 0.2 o N
0 F ‘ R
E A E A !
-02 # -02 a A
-0.4 = A -0.4 =
R i =
-0.6 -0.6 =
-0.8 -08
7" :\ L L ‘ L L L ‘ L L L ‘ L 1L L 7/‘ :\ L L ‘ L L L ‘ L L L ‘ L L L
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Avs.xe O<p,<1 AVS.Xe 1<p<2
1 ¢ 1 ¢
0.8 0.8 —
0.6 0.6 —
0.4 0.4
0.2 & A 0.2 —
o 2 4 )| o E s A Ao
F T r A ? 4}
02 [ A 02 [
—0.4 ; A sm12=2040 -0.4 ; +
06 FEa sml12=2800 056 =
-0.8 [ —08 [
7/‘ :\ L L ‘ L L L ‘ L L L ‘ L L L o :\ L L ‘ L L L ‘ L L L ‘ L L L
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Avs.xe 2<p<3 Avs.xe 3<pr

Figure 5.4: J/1 polarization parameter A in xr and py bins. The errors shown
here are statistical only.
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Table 5.3: A in xp bins with statistical errors only.

TR Azp)(SM12 = 2040) A(zp)(SM12 = 2800) Combined
0.25-0.35 0.092 £ 0.015 0.134 £ 0.017 0.110 £0.011
0.35 - 0.45 0.081 £0.013 0.129 £0.011 0.109 £ 0.008
0.45 - 0.55 0.073 £0.012 0.086 £ 0.009 0.081 £ 0.007
0.55 - 0.65 0.041 £0.019 —0.026 £ 0.014 —0.002 £ 0.011
0.65 - 0.75 —0.116 £ 0.034 —0.134 £ 0.024 —0.128 £ 0.020
0.75 - 0.85 —0.200 £ 0.073 —0.174 £+ 0.066 —0.186 £ 0.049

> 0.85 —0.44 £0.42 —0.51 £0.54 —0.47£0.33
All data 0.065 £ 0.007 0.070 £ 0.005 0.069 £ 0.004

5.3 Comparison

In order to compare with other experiments, A values in xr and pr bins from

E866 measurements were combined to obtain A in zx bins and the overall inte-

grated A\ using the following the relations:

> wiA;
> w;

w; = 1/0’

A=

2

i

where o; is the statistical error of some measurement A;, and A is the average

value of A;. The results are shown in Table 5.3. One can see from the table

that the .J/i starts slightly transversely polarized at small zp, then eventually

becomes partially longitudinally polarized as xp increases toward unity. The A

values from both magnet settings versus zz are plotted in Figure 5.5.
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The E866 results are compared with the results of CIP data [Bii 87]. Figure 5.6
shows the E866 results and data published by the CIP group. Recall that the CIP
experiment was fixed-target 7N collisions. At large xr, both experiments observe
longitudinal polarizations. At smaller x5, E866 sees small transverse polarization
while the CIP group saw no polarization. Since the dominant Feynman diagrams
are different for pN (mainly g-g fusion) and 7N (it has significant ¢g contributions)
at small xx, the differences in the polarization are not unexpected. However if the
0.1 systematic errors are included, the E866 results at xp < 0.5 are marginally in
agreement with no polarization.

The integrated polarization parameter A obtained by E866 and other previous
experiments are presented in Table 5.4 for comparison. Recall that E866 uses the
Collin-Soper frame and the other experiments have used the Gottfried-Jackson
frame as their reference frame. However the pr in fixed-target experiments is low
enough that the direct comparison is still sensible. E866 gives A = 0.069 + 0.004
integrated over all available data. If the systematic error is included, the E866
result shows no polarization. The transverse polarization at small xp is partially
cancelled by the longitudinal polarization at large . The overall result is in
agreement with other experiments, and in contrast to the non-relativistic QCD
calculation.

The A's were also integrated in 1-GeV pr bins for xp < 0.45 and zp > 0.45

to study the pr dependence, as shown in Figure 5.7. No pr dependence was
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Table 5.4: Overall A values from other fixed-target experiments and E866.

Experiment reaction NG Tp range A
E537 p+ W 153 GeV xp >0 —0.115 + 0.061
E537 ™ + W 15.3 GeV xp >0 0.028 £+ 0.004
E672/706 7~ + Be 31.5 GeV 0.1 <zp<0.8 —0.01 +0.08
E771 p+5Si 388GeV —0.05<zxp <0.25 —0.09 £0.12
E866 p+Cu 388GeV 025<zp<1.0 0.069 =+ 0.004 & syst.

identified for either xp region. This suggests that nuclear effects are probably
not responsible for the polarization observed, since one important cause of the
broadening in the py distribution in nuclear targets is the multiple scattering of
the incoming and outgoing partons with the nuclear media. If some of the nuclear
effects, e.g. energy loss inside nucleus, are important, one would expect to see

significant pr dependence on the polarization.
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6. CONCLUSIONS AND FUTURE PROSPECTS

The angular distribution of J/1¢ decays in the p*pu~ channel produced in 800
GeV proton-copper collisions has been measured for xy > 0.25. The polarization
parameter A is extracted in pr and xp bins for two magnet configurations with
different acceptances. The data indicate that the .J/i¢’s are produced with a
slight transverse polarization at zp < 0.6, which turns to longitudinal at zp >
0.6. This suggests that gluon-gluon fusion, which dominates at small xp, and
quark-antiquark annihilation, which dominates at large xp, leave .J/1’s in different
polarization states. Another fixed-target experiment [Bii 87], using pion beams,
also showed longitudinal polarization at rz — 1. However at smaller xp the
uncertainties are large and no evidence of polarization is seen in Biino’s paper.
The difference of the results from E866 will provide interesting information on how
the production mechanism affects the polarization, because in 7N interactions the
production is dominated by quark-antiquark annihilation while in the pN case the
production is dominated by gluon-gluon fusion in the range of xr < 0.6.

It should be mentioned that the .J/i¢ samples collected in this study do not
purely come from pN interactions. A significant amount of pions were generated
at the dump by hadronic interactions, and those pions can further interact with
the beam dump to produce J/¢’s. A calculation [Mue 99] shows that about 10%
of the J/1’s come from pion interactions at small . This has to be taken into

account when comparing with the theoretical calculations. Table 6.1 shows the
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Table 6.1: Ratio of primary proton and secondary pion induced-J/v [Mue 99].
At small xp, about 10 % of the J/1’s were produced by pions generated from the
primary proton beam interacting with the dump.

rp ratio(%)

0.2 15.1
0.3 9.3
0.4 6.2
0.5 4.4
0.6 3.4
0.7 3.0
0.8 2.9

estimate of the ratios of the J/¢’s produced by the secondary pions to those
produced by the primary proton beam in various xp ranges.

It is also important to keep in mind that a substantial fraction of J/’s come
from decays of the x,. states and ¢’ decays in addition to direct J/t¢’s. All the
processes contribute different amounts of polarization to J/¢. Thus one needs to
know the relative production cross sections of the various charmonium states to
interpret the results properly. So far, only production ratios for pion-produced
charmonium states are available. It is also necessary to know the polarization of
J/1’s from each process to extract the polarization of direct J/1¢ decays. A theo-
retical calculation has been done for 7N collisions using the Color-Singlet Model
[Van 95|, but the results do not agree with the pion data. It would be interesting
to see the predictions of similar calculations for pN collisions. A measurement of

' polarization would be very interesting since the . state contribution is absent.
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In this experiment the mass resolution was sacrificed to gain the yield rate and
angular coverage; the data sample contains only about 1 % of ¢"’s and they are
not resolved from the .J/1 peak.

It is interesting to notice that if the J/i’s are integrated over the entire xp
range, the transverse polarization at small xzz partially cancels the longitudinal
polarization at large x, and the overall effect appears to be no polarization if
the systematic uncertainty is included. Unpolarized J/1’s were also observed in
other fixed-target experiments, using either proton or pion beams.

Nuclear effects may also affect the J/1 polarization, since the J/¢ may collide
with other nucleons before it can escape the nucleus. The original polarization
may thus be supressed or smeared out. To eliminate such an effect, a hydrogen
target is preferable, at the price of smaller production rate however. It would also
be interesting to study the nuclear dependence of A to understand the nuclear
effects on the polarization patterns.

The large-zr behavior is of interest and yet remains mysterious. The polar-
ization is changed to longitudinal. Similar behavior was observed also in the pion
data and a possible explanation is higher-twist effects [Van 95]. It is not clear
however how this mechanism applies to proton-induced data. In this study the
xr coverage is only up to 0.95. The statistics are too poor to produce sensible re-
sults for 7 > 0.95. Even for the 0.85 < zr < 0.95 bin it is desirable to reduce the

statistical uncertainty. It would be interesting to know whether \ actually drops
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to —1 when zp approaches 1.0 in pN interactions. This might give us better

understandings of the higher-twist effects.
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A. cosf Acceptance in zr and pr Bins

The cos @ acceptance in xr and pr bins for both magnet settings is presented
in this appendix. In Figures A1l to A6 the cos# acceptance for the “SM12=2040"
data is plotted, and from Figure A7 to A12 the cos # acceptance for the “SM12=2800"

data is plotted.
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Figure A.11: cos# acceptance in xr and pr bins of the 2800Amp data.
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B. Fitting the J/¢ Peaks

In this appendix the fitting of the .J/1¢ peaks is presented. The di-muon mass
spectrum from each bin of cosf, pr, and zp, are fitted to a Gaussian plus a
background function with J/¢’s fitted to a Gaussian shape. The count of J/i’s
in each bin was then calculated according to the output parameters of the Gaussian
fit. Figure B1 to B42 show the fittings from the “SM12 = 2040 Amp” data set,

and Figure B43 to B84 show the fittings from the “SM12 = 2800 Amp” data set.
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Figure B.1: Fitting of the mass spectrum: 0 < p; < 1 and 0.25 < zr < 0.35. The
backgrounds were fitted to second-order polynomials, and the .J/i’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2040 Ampere.
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Figure B.5: Fitting of the mass spectrum: 0 < p; < 1 and 0.45 < zp < 0.55.
The backgrounds were fitted to Kaplan functions, and the J/1’s were fitted to
Gaussians. The cosf ranges are indicated under each spectrum. The current of
SM12 magnet was 2040 Ampere.
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Figure B.6: Fitting of the mass spectrum: 0 < p; < 1 and 0.45 < zp < 0.55.
The backgrounds were fitted to Kaplan functions, and the J/1’s were fitted to
Gaussians. The cosf ranges are indicated under each spectrum. The current of
SM12 magnet was 2040 Ampere.
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Figure B.7: Fitting of the mass spectrum: 0 < p; < 1 and 0.55 < zr < 0.65. The
backgrounds were fitted to second-order polynomials, and the .J/i’s were fitted
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of SM12 magnet was 2040 Ampere.
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Figure B.9: Fitting of the mass spectrum: 0 < p; < 1 and 0.65 < zp < 0.75. The
backgrounds were fitted to second-order polynomials, and the .J/i’s were fitted
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of SM12 magnet was 2040 Ampere.
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backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
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Figure B.15: Fitting of the mass spectrum: 1 < p; < 2 and 0.35 < xp < 0.45. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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Figure B.16: Fitting of the mass spectrum: 1 < p; < 2 and 0.35 < xp < 0.45. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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of SM12 magnet was 2040 Ampere.
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Figure B.17: Fitting of the mass spectrum: 1 < p; < 2 and 0.45 < xp < 0.55.
The backgrounds were fitted to Kaplan functions, and the J/1’s were fitted to
Gaussians. The cosf ranges are indicated under each spectrum. The current of
SM12 magnet was 2040 Ampere.
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Figure B.18: Fitting of the mass spectrum: 1 < p; < 2 and 0.45 < xp < 0.55.
The backgrounds were fitted to Kaplan functions, and the J/1’s were fitted to
Gaussians. The cosf ranges are indicated under each spectrum. The current of
SM12 magnet was 2040 Ampere.
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Figure B.19: Fitting of the mass spectrum: 1 < p; < 2 and 0.55 < xp < 0.65. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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of SM12 magnet was 2040 Ampere.
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Figure B.22: Fitting of the mass spectrum: 1 < p; < 2 and 0.65 < xp < 0.75. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2040 Ampere.
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Figure B.23: Fitting of the mass spectrum: 1 < p; < 2 and 0.75 < xp < 0.85. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2040 Ampere.

138



F /6045 /40 C ST C TR
r | 1 7454+ 1077 1000 E 1 896.6 11.91 C P 9444t 12.25
800 o s C = i 1000 = e
C maar 7 r a1 e C s e
C Sims C Ry S F Sisor _ sirz
600 [ 750 E 750
4100 & 500 500 £
200 F 250 250
f L E
0 C PRI o t h TR 0 r TR
2 4 6 GeV 2 4 6 GeV 2 6 GeV

—0.8<cost¥<—-0.7 —0.7<cost¥<—-0.6 —0.6<cosv¥<~0.5

1000

X/ndi1850 7 30 X/nar8.11 /30
P 8770 P 8030+ 1105

= aas zeos 800

¥/ndi30.10 /30
= 1182 Pl 7552
P2 3081+ 2763-02

sl 800

+ 10.52
30764  29B4E-02

2350+ 2796E-02

-339.6+ 1010 -244.7 % 9.369
750 2844+ 6.069 2527+ 6.001 186.9+ 5504
—4699% 1038 4056+ fota -30.34% 9403

800 600

500

400 400

250 200 200

Muupu‘\u‘u\‘u\
~
’\3;,\\\‘\\\‘\\\‘\\\‘\\

4 6 GeV

’\)r\\\‘\\\\‘\\\\‘\\\\‘

6 GeV 6GeV

—0.5<cost<—-0.4 —0.4<cos<—-0.3 —0.3<cos¥<—-0.2

= Y/ndi3317 /32 = X/ndtaiss /36 F/nd(3877 ] 36
800 B me ,psl 800 - B s esl 800 ¢ R i e
2371+ .2928E-02 | 2343+ 2946E-02 |- \2342+  2770E-02
600 T e 2=l s00 B o= a0 JEe i
400 400 |- 400 [
200 [ 200 & 200 [
0 = R 0 [+ N 0 S I
2 2

2 4 6 GeV 4 6 GeV 4 6 GeV

—0.2<cos¥<—-0.1 —0.1<cos1¥<0.0 0.0<cosv¥<0.1
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Figure B.26: Fitting of the mass spectrum: 2 < p; < 3 and 0.35 < xp < 0.45. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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Figure B.27: Fitting of the mass spectrum: 2 < p; < 3 and 0.35 < xp < 0.45. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2040 Ampere.
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Figure B.28: Fitting of the mass spectrum: 2 < p; < 3 and 0.45 < xp < 0.55.
The backgrounds were fitted to Kaplan functions, and the J/1’s were fitted to
Gaussians. The cosf ranges are indicated under each spectrum. The current of
SM12 magnet was 2040 Ampere.
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Figure B.29: Fitting of the mass spectrum: 2 < p; < 3 and 0.45 < xp < 0.55.
The backgrounds were fitted to Kaplan functions, and the J/1’s were fitted to
Gaussians. The cosf ranges are indicated under each spectrum. The current of
SM12 magnet was 2040 Ampere.
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Figure B.30: Fitting of the mass spectrum: 2 < p; < 3 and 0.55 < xp < 0.65. The
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of SM12 magnet was 2040 Ampere.
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Figure B.31: Fitting of the mass spectrum: 2 < p; < 3 and 0.55 < xp < 0.65. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2040 Ampere.
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Figure B.33: Fitting of the mass spectrum: 2 < p; < 3 and 0.65 < xp < 0.75. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2040 Ampere.
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Figure B.34: Fitting of the mass spectrum: 2 < p; < 3 and 0.65 < xp < 0.75. The
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Figure B.36: Fitting of the mass spectrum: 3 < p; and 0.25 < xp < 0.35. The
backgrounds were fitted to exponential functions, and the J/1’s were fitted to
Gaussians. The cosf ranges are indicated under each spectrum. The current of
SM12 magnet was 2040 Ampere.
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Figure B.37: Fitting of the mass spectrum: 3 < p; and 0.35 < xp < 0.45. The
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Figure B.42: Fitting of the mass spectrum: 3 < p; and 0.65 < xp < 0.75. The
backgrounds were fitted to second-order polynomials, and the .J/¢’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
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Figure B.50: Fitting of the mass spectrum: 0 < p; < 1 and 0.55 < xp < 0.65.
The backgrounds were fitted to Kaplan functions, and the J/1’s were fitted to
Gaussians. The cosf ranges are indicated under each spectrum. The current of
SM12 magnet was 2800 Ampere.
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Figure B.51: Fitting of the mass spectrum: 0 < p; < 1 and 0.65 < xp < 0.75. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2800 Ampere.
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Figure B.52: Fitting of the mass spectrum: 0 < p; < 1 and 0.65 < xp < 0.75. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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of SM12 magnet was 2800 Ampere.
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Figure B.53: Fitting of the mass spectrum: 0 < p; < 1 and 0.75 < xp < 0.85. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2800 Ampere.
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Figure B.55: Fitting of the mass spectrum: 1 < p; < 2 and 0.25 < xp < 0.35. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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of SM12 magnet was 2800 Ampere.
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Figure B.57: Fitting of the mass spectrum: 1 < p; < 2 and 0.35 < xp < 0.45. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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of SM12 magnet was 2800 Ampere.
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Figure B.59: Fitting of the mass spectrum: 1 < p; < 2 and 0.45 < xp < 0.55. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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Figure B.61: Fitting of the mass spectrum: 1 < p; < 2 and 0.55 < xp < 0.65. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2800 Ampere.
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Figure B.62: Fitting of the mass spectrum: 1 < p; < 2 and 0.55 < xp < 0.65. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
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backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
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Figure B.69: Fitting of the mass spectrum: 2 < p; < 3 and 0.35 < xp < 0.45. The
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Figure B.71: Fitting of the mass spectrum: 2 < p; < 3 and 0.45 < xp < 0.55. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2800 Ampere.
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Figure B.72: Fitting of the mass spectrum: 2 < p; < 3 and 0.55 < xp < 0.65. The
backgrounds were fitted to second-order polynomials, and the .J/1’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2800 Ampere.
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Figure B.77: Fitting of the mass spectrum: 3 < p; and 0.25 < xp < 0.35. The
backgrounds were fitted to second-order polynomials, and the .J/¢’s were fitted
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Figure B.80: Fitting of the mass spectrum: 3 < p; and 0.35 < xp < 0.45. The
backgrounds were fitted to second-order polynomials, and the .J/¢’s were fitted
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of SM12 magnet was 2800 Ampere.
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Figure B.81: Fitting of the mass spectrum: 3 < p; and 0.45 < xp < 0.55. The
backgrounds were fitted to second-order polynomials, and the .J/¢’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2800 Ampere.

196



100

75

50

25

100
75
50
25

150

100

50

ndi22.31 /34
P1 79.10+ 3.346
P2 5026+ 9671E-02
P3 2470+ 9493E-02
Pa —soi2% 3183
PS5 1012+ 1.542
PE —1.888+ 2578

et bt wl

6 GeV

2 4
0.0<cost<0.1

/a7 7 40

P B8 3562
P2 30474 90326-02
3 2410%  B9SHE-02
P4 2631 2.741
P5 -9.266+ 1.136
Pe 8338+ 1801

pE=g

N
~

15+ 4,670
P2 2907+ BBO1E-02
P3 2362+ 9972E-02
P4 4250+ 7.308
Ps -8EI0% 2508
6 —2912% 5331

-

N
~

0.6<cos¥<0.7

100

75

50

25

100

50

150

100

50

@]

'/ndf25,52 / 32
Pl 8247+ 3455

P2 3.048% .9376E-02
3 2357+ a138E-02
e 4871 & 3.481
5 -26.01 £ 1.750
Pe 3635+ 3080

i

TR

4 6 GeV

N r==rT

0.1<cost<0.2

X/ni2T14 7 36
P w274t 3703
P2 3022+ gpese-02
P35 7418+ B791E-02
P4 19.79 £ 3617
P5 -3.022 £ 1,537
P —2765¢ 2673

putne ]
6 GeV

2 4
0.4<cos¥<0.5

X/nita060 7 36
Pl 130.5 £ 4722
P2 2847 .7737E-02

2300+ B508E-02
49725 5176
—1z13s 201
3020 + 3411

M@\\‘\\\\‘\\\\‘\\

0.7<cosv¥<0.8

50

0

/ndi43.85 /31
3l 8296+ 3773
P2 3031+ 9418E-02
P3 22441 93saE-02
Pa R 3692
5 13,63+ 1.889
P -3.057+ .3340

it bl o

4 6 GeV

N @‘HH‘HH‘HH‘H

0.2<cosu¥<0.3

X/ndi2086 7 33
Pl 9757+ 3788
P2 3018+ o20ae-02
P35 2573+ 1037E-01
P4 42.15¢ 4.751
PS -17.20% 2058
P 19224 3700

T T

bk b L L

4 6GeV

N

0.5<cos¥<0.6

Y naaias 7 I3

5 o a2

P2 2934+ .10226-01

P3 2547+ . 1249E-01

I o

s B

s Siess oo
t +

[ bt o] ol

4 6 GeV

0.8<c0s¥<0.9

Figure B.82: Fitting of the mass spectrum: 3 < p; and 0.45 < xp < 0.55. The
backgrounds were fitted to second-order polynomials, and the .J/¢’s were fitted
to Gaussians. The cosf ranges are indicated under each spectrum. The current
of SM12 magnet was 2800 Ampere.
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C. Fitting the )\’s

After the counts of the .J/i¢ peaks for each bin of cosf, zp, and pr, were
determined, the number of counts was plotted versus cosf. This gave us the
accepted cosf distributions for J/1 in bins of 2 and pp. Then those accepted
cos f distributions were divided by the acceptance curves shown in Appendix A
to obtain the true distributions. The corrected cos # distributions were then fitted
to 1+ ) cos? @ times an arbitrary normalization constant. Those distributions and
the fits are presented in this appendix. In Figures C1 to C6 are the curves for
the “SM12=2040" data set, and from Figures C7 to C12 are the curves for the

“SM12=2800" data set.
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